Болезни и лечение

Физиология дыхания и спинного мозга человека. Физиология дыхания в перинатальном периоде

Тот факт, что раздражителем хеморецепторов является понижение напряжения кислорода в плазме крови, а не уменьшение общего содержания его в крови, доказывается следующими наблюдениями Л. Л. Шика. При понижении количества гемоглобина или при связывании его угарным газом содержание кислорода в крови резко уменьшено, но растворение О2 в плазме крови не нарушено и напряжение его в плазме остается нормальным. При этом возбуждения хеморецепторов не происходит и дыхание не меняется, хотя транспорт кислорода резко нарушен и ткани испытывают состояние кислородного голодания, так как недостаточно кислорода доставляется им гемоглобином. При понижении атмосферного давления, когда уменьшается напряжение кислорода в крови, возникает возбуждение хеморецепторов и учащение дыхания.

Характер изменения дыхания при избытке углекислоты и понижении напряжения кислорода в крови различен. При небольшом понижении напряжения кислорода в крови наблюдается рефлекторное учащение ритма дыхания, а при незначительном повышении напряжения углекислоты в крови происходит рефлекторное углубление дыхательных движений.

Таким образом, деятельность дыхательного центра регулируется воздействием повышенной концентрации Н+-ионов и увеличенного напряжения СО2 на хеморецепторы продолговатого мозга и на хеморецепторы каротидного и аортального телец, а также действием на хеморецепторы указанных сосудистых рефлексогенных зон понижения напряжения кислорода в артериальной крови.

Причины первого вдоха новорожденного объясняются тем, что в утробе матери газообмен плода происходит через пупочные сосуды, тесно контактирующие с материнской кровью в плаценте. Прекращение этой связи с матерью при рождении приводит к понижению напряжения кислорода и накоплению углекислоты в крови плода. Это, по данным Баркрофта, вызывает раздражение дыхательного центра и приводит к вдоху.

Для наступления первого вдоха важно, чтобы прекращение эмбрионального дыхания произошло внезапно: при медленном зажатии пуповины дыхательный центр не возбуждается и плод погибает, не совершив ни единого вдоха.

Следует учитывать также, что переход в новые условия вызывает у новорожденного раздражение ряда рецепторов и поступление по афферентным нервам потока импульсов, повышающих возбудимость центральной нервной системы, в том числе и дыхательного центра (И. А. Аршавский).

Значение механорецепторов в регуляции дыхания. Дыхательный центр получает афферентные импульсы не только от хеморецепторов, но и от прессорецепторов сосудистых рефлексогенных зон, а также от механорецепторов легких, дыхательных путей и дыхательных мышц.

Влияние прессорецепторов сосудистых рефлексогенных зон обнаруживается в том, что повышение давления в изолированном каротидном синусе, связанном с организмом только нервными волокнами, приводит к угнетению дыхательных движений. Это происходит и в организме при повышении артериального давления. Наоборот, при понижении артериального давления дыхание учащается и углубляется.

Важное значение в регуляции дыхания имеют импульсы, поступающие к дыхательному центру по блуждающим нервам от рецепторов легких. От них в значительной степени зависит глубина вдоха и выдоха. Наличие рефлекторных влияний с легких было описано в 1868 г. Герингом и Брейером и легло в основу представления о рефлекторной саморегуляции дыхания. Она проявляется в том, что при вдохе в рецепторах, находящихся в стенках альвеол, возникают импульсы, рефлекторно тормозящие вдох, и стимулирующих выдох, а при очень резком выдохе, при крайней степени уменьшения объема легких возникают импульсы, поступающие к дыхательному центру и рефлекторно стимулирующие вдох. О наличии такой рефлекторной регуляции свидетельствуют следующие факты:

В легочной ткани в стенках альвеол, т. е. в наиболее растяжимой части легкого, имеются интерорецепторы, представляющие собой воспринимающие раздражения окончания афферентных волокон блуждающего нерва;

После перерезки блуждающих нервов дыхание становится резко замедленным и глубоким;

При раздувании легкого индифферентным газом, например азотом, при обязательном условии целости блуждающих нервов, мускулатура диафрагмы и межреберий внезапно перестает сокращаться, вдох останавливается, не достигнув обычной глубины; наоборот, при искусственном отсасывании воздуха из легкого наступает сокращение диафрагмы.

На основании всех этих фактов авторы пришли к выводу, что растяжение легочных альвеол во время вдоха вызывает раздражение рецепторов легких, вследствие чего учащаются импульсы, приходящие к дыхательному центру по легочным ветвям блуждающих нервов, а это рефлекторно возбуждает экспираторные нейроны дыхательного центра, и, следовательно, влечет за собой возникновение выдоха. Таким образом, как писали Геринг и Брейер, «каждый вдох, поскольку он растягивает легкие, сам подготовляет свой конец».

Если соединить с осциллографом периферические концы перерезанных блуждающих нервов, можно зарегистрировать потенциалы действия, возникающие в рецепторах легких и идущие по блуждающим нервам к центральной нервной системе не только при раздувании легких, но и при искусственном отсасывании из них воздуха. При естественном же дыхании частые токи действия в блуждающем нерве обнаруживаются только во время вдоха; во время же естественного выдоха их не наблюдается (рисунок 4).

Рисунок 4 – Токи действия в блуждающем нерве при растяжении легочной ткани во время вдоха (по Эдриану) Сверху вниз: 1 – афферентные импульсы в блуждающем нерве: 2 – запись дыхания (вдох – вверх, выдох – вниз); 3 – отметка времени

Следовательно, спадение легких обусловливает рефлекторное раздражение дыхательного центра только при таком сильном их сжатии, какого не бывает при нормальном, обычном выдохе. Это наблюдается лишь при очень глубоком выдохе или внезапном двустороннем пневмотораксе, на что диафрагма рефлекторно реагирует сокращением. Во время естественного дыхания рецепторы блуждающих нервов раздражаются только при растяжении легких и рефлекторно стимулируют выдох.

Помимо механорецепторов легких, в регуляции дыхания принимают участие механорецепторы межреберных мышц и диафрагмы. Они возбуждаются растяжением при выдохе и рефлекторно стимулируют вдох (С. И. Франштейн).

Соотношения между инспираторными и экспираторными нейронами дыхательного центра. Между инспираторными и экспираторными нейронами существуют сложные реципрокные (сопряженные) соотношения. Это означает, что возбуждение инспираторных нейронов тормозит экспираторные, а возбуждение экспираторных нейронов тормозит инспиряторные. Такие явления частично обусловлены наличием прямых связей, существующих между нейронами дыхательного центра, но в основном они зависят от рефлекторных влияний и от функционирования центра пневмотаксиса.

Взаимодействие между нейронами дыхательного центра в настоящее время представляют следующим образом. Вследствие рефлекторного (через хеморецепторы) действия углекислоты на дыхательный центр возникает возбуждение инспираторных нейронов, которое передается на мотонейроны, иннервирующие дыхательные мышцы, вызывая акт вдоха. Одновременно импульсы от инспираторных нейронов поступают к центру пневмотаксиса, расположенному в варолиевом мосту, а от него по отросткам его нейронов импульсы приходят к экспираторным нейронам дыхательного центра продолговатого мозга, вызывая возбуждение этих нейронов, прекращение вдоха и стимуляцию выдоха. Кроме того, возбуждение экспираторных нейронов во время вдоха осуществляется и рефлекторно посредством рефлекса Геринга – Брейера. После перерезки блуждающих нервов приток импульсов от механорецепторов легких прекращается и экспираторные нейроны могут возбуждаться лишь посредством импульсов, приходящих из центра пневмотаксиса. Импульсация, возбуждающая центр выдоха, значительно уменьшается и возбуждение его несколько запаздывает. Поэтому после перерезки блуждающих нервов вдох продолжается значительно дольше и сменяется выдохом позднее, чем до перерезки нервов. Дыхание становится редким и глубоким.

У родившегося ребенка после перевязки пуповины прекращается га­зообмен через пупочные сосуды, контактирующие в плаценте с кровью матери. В крови новорожденного накапливается углекислый газ, который, так же как и недостаток кислорода, гуморально возбуждает его дыхатель­ный центр и вызывает первый вдох.

Рефлекторная регуляция дыхания осуществляется постоян­ными и непостоянными рефлекторными влияниями на функцию дыха­тельного центра.

Постоянные рефлекторные влияния возникают в результате раздражения следующих рецепторов:

1) механорецепторов альвеол – рефлекс Э. Геринга - И. Брейера;

2) механорецепторов корня легкого и плевры - плевропульмональный рефлекс;

3) хеморецепторов сонных синусов - рефлекс К. Гейманса;

4) проприорецепторов дыхательных мышц.

Рефлекс Э. Геринга - И. Брейера называют рефлексом торможения вдо­ха при растяжении легких. Суть его: при вдохе в легких возникают им­пульсы, рефлекторно тормозящие вдох и стимулирующие выдох, а при выдохе - импульсы, рефлекторно стимулирующие вдох. Он является при­мером регуляции по принципу обратной связи. Перерезка блуждающих нервов выключает этот рефлекс, дыхание становится редким и глубоким. У спинального животного, у которого произведена перерезка спинного мозга на границе с продолговатым, после исчезновения спинального шока дыхание и температура тела не восстанавливаются совсем.

Плевропульмональный рефлекс возникает при возбуждении механо­рецепторов легких и плевры при растяжении последних. В конечном итоге он изменяет тонус дыхательных мышц, увеличивая или уменьшая дыха­тельный объем легких.

Рефлекс К. Гейманса заключается в рефлекторном усилении дыха­тельных движений при повышении напряжения СО 2 в крови, омывающей

сонные синусы.

К дыхательному центру постоянно поступают нервные импульсы от проприорецепторов дыхательных мышц, которые при вдохе тормозят ак­тивность нейронов вдоха и способствуют наступлению выдоха.

Непостоянные рефлекторные влияния на активность дыха­тельного центра связаны с возбуждением экстеро- и интерорецепторов:

слизистой оболочки верхних дыхательных путей;

температурных и болевых рецепторов кожи;

проприорецепторов скелетных мышц.

Например, при вдыхании аммиака, хлора, дыма и т.д. наблюдается Рефлекторный спазм голосовой щели и задержка дыхания; при раздражении слизистой оболочки носа пылью - чихание; гортани, трахеи, бронхов-кашель.

Кора большого мозга, посылая импульсы к дыхательному центру принимает активное участие в регуляции нормального дыхания. Именно благодаря коре осуществляется приспособление дыхания при разговоре пении, спорте, трудовой деятельности человека. Она участвует в выработ­ке условных дыхательных рефлексов, в изменении дыхания при внушении и т.д. Так, например, если человеку, находящемуся в состоянии гипноти­ческого сна, внушить, будто он выполняет тяжелую физическую работу, дыхание усиливается, несмотря на то, что он продолжает оставаться в со­стоянии полного физического покоя.

ДЫХАТЕЛЬНЫЙ ЦЕНТР.

Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в зависимости от состояния организма регулируются дыхательным центром , расположенным в продолговатом мозге.

В дыхательном центре имеются две группы нейронов: инспираторные и экспираторные. При возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот.

В верхней части моста головного мозга (варолиев мост ) находится пневмотаксический центр , который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспечивает правильное чередование циклов дыхательных движений.

Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга , иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III-IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III-XII) грудных сегментов спинного мозга.

Регуляция деятельности дыхательного центра.

Регуляция деятельности дыхательного центра осуществляется с помощью гуморальных, рефлекторных механизмов и нервных импульсов, поступающих из вышележащих отделов головного мозга.

Гуморальные механизмы. Специфическим регулятором активности нейронов дыхательного центра является углекислый газ , который действует на дыхательные нейроны непосредственно и опосредованно. В ретикулярной формации продолговатого мозга, вблизи дыхательного центра, а также в области сонных синусов и дуги аорты обнаружены хеморецепторы , чувствительные к углекислому газу. При увеличении напряжения углекислого газа в крови хеморецепторы возбуждаются, и нервные импульсы поступают к инспираторным нейронам, что приводит к повышению их активности.

Углекислый газ повышает возбудимость нейронов коры головного мозга. В свою очередь клетки КГМ стимулируют активность нейронов дыхательного центра.

При оптимальном содержании в крови углекислого газа и кислорода наблюдаются дыхательные движения, отражающие умеренную степень возбуждения нейронов дыхательного центра. Эти дыхательные движения грудной клетки получили название эйпноэ .

Избыточное содержание углекислого газа и недостаток кислорода в крови усиливают активность дыхательного центра, что обусловливает возникновение частых и глубоких дыхательных движений – гиперпноэ . Еще большее нарастание количества углекислого газа в крови приводит к нарушению ритма дыхания и появлению одышки – диспноэ . Понижение концентрации углекислого газа и избыток кислорода в крови угнетают активность дыхательного центра. В этом случае дыхание становится поверхностным, редким и может наступить его остановка – апноэ .

Механизм первого вдоха новорожденного.

В организме матери газообмен плода происходит через пупочные сосуды. После рождения ребенка и отделения плаценты указанная связь нарушается. Метаболические процессы в организме новорожденного приводят к образованию и накоплению углекислого газа, который, так же как и недостаток кислорода, гуморально возбуждает дыхательный центр. Кроме того, изменение условий существования ребенка приводит к возбуждению экстеро- и проприорецепторов, что также является одним из механизмов, принимающих участие в осуществлении первого вдоха новорожденного.

Рефлекторные механизмы.

Различают постоянные и непостоянные (эпизодические) рефлекторные влияния на функциональное состояние дыхательного центра.

Постоянные рефлекторные влияния возникают в результате раздражения рецепторов альвеол (рефлекс Геринга - Брейера ), корня легкого и плевры (пульмоторакальный рефлекс ), хеморецепторов дуги аорты и сонных синусов (рефлекс Гейманса ), проприорецепторов дыхательных мышц.

Наиболее важным рефлексом является рефлекс Геринга - Брейера . В альвеолах легких заложены механорецепторы растяжения и спадения, являющиеся чувствительными нервными окончаниями блуждающего нерва. Любое увеличение объема легочных альвеол возбуждает эти рецепторы.

Рефлекс Геринга - Брейера является одним из механизмов саморегуляции дыхательного процесса, обеспечивая смену актов вдоха и выдоха. При растяжении альвеол во время вдоха нервные импульсы от рецепторов растяжения по блуждающему нерву идут к экспираторным нейронам, которые, возбуждаясь, тормозят активность инспираторных нейронов, что приводит к пассивному выдоху. Легочные альвеолы спадаются, и нервные импульсы от рецепторов растяжения уже не поступают к экспираторным нейронам. Активность их падает, что создает условия для повышения возбудимости инспираторной части дыхательного центра и осуществлению активного вдоха .

Кроме того, активность инспираторных нейронов усиливается при нарастании концентрации углекислого газа в крови, что также способствует проявлению вдоха.

Пульмоторакальный рефлекс возникает при возбуждении рецепторов, заложенных в легочной ткани и плевре. Проявляется этот рефлекс при растяжении легких и плевры. Рефлекторная дуга замыкается на уровне шейных и грудных сегментов спинного мозга.

К дыхательному центру постоянно поступают нервные импульсы от проприорецепторов дыхательных мышц. Во время вдоха происходит возбуждение проприорецепторов дыхательных мышц и нервные импульсы от них поступают в инспираторную часть дыхательного центра. Под влиянием нервных импульсов тормозится активность вдыхательных нейронов, что способствует наступлению выдоха.

Непостоянные рефлекторные влияния на активность дыхательных нейронов связаны с возбуждением разнообразных экстеро- и интерорецепторов . К ним относятся рефлексы, возникающие при раздражении рецепторов слизистой оболочки верхних дыхательных путей, слизистой носа, носоглотки, температурных и болевых рецепторов кожи, проприорецепторов скелетных мышц. Так, например, при внезапном вдыхании паров аммиака, хлора, сернистого ангидрида, табачного дыма и некоторых других веществ происходит раздражение рецепторов слизистой оболочки носа, глотки, гортани, что приводит к рефлекторному спазму голосовой щели, а иногда даже мускулатуры бронхов и рефлекторной задержке дыхания.

При раздражении эпителия дыхательных путей накопившейся пылью, слизью, а также попавшими химическими раздражителями и инородными телами наблюдается чиханье и кашель. Чиханье возникает при раздражении рецепторов слизистой оболочки носа, кашель - при возбуждении рецепторов гортани, трахеи, бронхов.

Влияние клеток коры большого мозга на активность дыхательного центра.

По М. В. Сергиевскому, регуляция активности дыхательного центра представлена тремя уровнями.

Первый уровень регуляции - спинной мозг. Здесь располагаются центры диафрагмальных и межреберных нервов, обусловливающие сокращение дыхательных мышц.

Второй уровень регуляции - продолговатый мозг. Здесь находится дыхательный центр. Этот уровень регуляции обеспечивает ритмичную смену фаз дыхания и активность спинномозговых мотонейронов, аксоны которых иннервируют дыхательную мускулатуру.

Третий уровень регуляции - верхние отделы головного мозга, включающие и корковые нейроны. Только при участии коры большого мозга возможно адекватное приспособление реакций системы дыхания к изменяющимся условиям окружающей среды.

ДЫХАНИЕ ПРИ ФИЗИЧЕСКОЙ НАГРУЗКЕ.

У тренированных людей при напряженной мышечной работе объем легочной вентиляции возрастает до 50-100 л/мин по сравнению с 5-8 л в состоянии относительного физиологического покоя. Повышение минутного объема дыхания при физической нагрузке связано с увеличением глубины и частоты дыхательных движений. При этом у тренированных людей, в основном, изменяется глубина дыхания, у нетренированных - частота дыхательных движений.

При физической нагрузке увеличивается концентрация в крови и тканях углекислого газа и молочной кислоты, которые стимулируют нейроны дыхательного центра как гуморальным путем, так и за счет нервных импульсов, поступающих от сосудистых рефлексогенных зон. Наконец, активность нейронов дыхательного центра обеспечивается потоком нервных импульсов, поступающих от клеток коры головного мозга, обладающих высокой чувствительностью к недостатку кислорода и к избытку углекислого газа.

Одновременно возникают приспособительные реакции в сердечно-сосудистой системе . Увеличиваются частота и сила сердечных сокращений, повышается артериальное давление, расширяются сосуды работающих мышц и суживаются сосуды других областей.

Таким образом, система дыхания обеспечивает возрастающие потребности организма в кислороде. Системы же кровообращения и крови, перестраиваясь на новый функциональный уровень, способствуют транспорту кислорода к тканям и углекислого газа к легким.


Первый вдох новорожденного происходит по такому механизму — перемежающееся сжатие грудной клетки в процессе родов через естественные родовые пути облегчает удаление из легких фе­тальной жидкости. Сурфактант выстилающего альвеолы слизистого слоя, снижая поверхностное натяжение и необходимое для открытия альвеол давление, облегчает аэрацию легких.

Несмотря на это, давление, необходимое для наполнения возду­хом легких при первом вдохе новорожденного, выше, чем при вдохе в любом другом возрасте. Оно колеблется от 10 до 50 см вод. ст. и обычно составляет 10-20 см вод. ст., в то время как при последующих вдохах у здоровых новорожденных и у взрослых оно около 4 см вод. ст. Это обусловлено необходимостью преодоления при первом вдохе сил поверхностного натяжения (особенно в мелких разветвлениях бронхов), вяз­кости оставшейся в дыхательных путях жидкости и поступления в легкие приблизительно 50 мл воздуха, 20-30 мл из которых остаются в легких, образуя ФОЕ. Большая часть фетальной жидко­сти из легких всасывается в легочный кровоток, который многократно увеличивается, так как весь выброс правого желудочка направляется в сосу­дистое русло легких. Остатки фетальной жидко­сти выделяются через верхние дыхательные пути и проглатываются, а иногда вновь попадают из ро­тоглотки в дыхательные пути. Механизм удаления жидкости нарушается при кесаревом сечении или вследствие повреждения эндотелия, гипоальбуминемии, повышенного венозного давления в легких, поступления в кровь новорожденного седативных препаратов.

Пусковые факторы первого вдоха новорожденного многочис­ленны. Каков вклад каждого из них, неизвестно. В их число входят снижение Ро2 и pH и повыше­ние Рсо2 вследствие прекращения плацентарного кровообращения, перераспределение сердечного выброса после пережатия сосудов пуповины, сни­жение температуры тела, разнообразные тактиль­ные стимулы.

У детей с низкой массой тела при рождении лег­кие значительно податливей, чем у доношенных, что затрудняет первый вдох новорожденного. ФОЕ у глубоко недо­ношенных наименьшая в связи с наличием ателек­тазов. Нарушения вентиляционно-перфузионного отношения наиболее выражены и длительны при образовании воздушных полостей по типу воздуш­ных ловушек. В результате ателектазов, внутрилегочного шунтирования и гиповентиляции развива­ется гипоксемия (Рао2 50-60 мм рт. ст.) и гиперкапния. Наиболее глубокие, близкие к таковым при болезни гиалиновых мембран нарушения газооб­мена наблюдаются у детей с экстремально низкой массой тела при рождении.

Статью подготовил и отредактировал: врач-хирург

Видео:

Полезно:

Статьи по теме:

  1. Оценка состояния новорожденного ребенка в первую очередь отражает его жизнеспособность и возможность адаптации к внешней...
  2. В характеристику неврологического статуса новорожденного ребенка входит состояние тонуса мышц и двигательной актив­ности, оценка безусловных...
  3. Рождение ребенка одно из самых важных событий в семье любого человека. В этом сложном процессе...
  4. Новорожденный малыш вначале выглядит «скрюченным». Ручки и ножки еще не смогли разогнуться. Со временем, когда...
  5. Под зрелостью новорожденного ребенка подразумевают соответствие морфологического и функционального развития ЦНС, желудочно-кишечного аппарата и дыхательной...
  6. Появление в доме новорожденного крохи – невероятная радость и безграничное счастье. Однако это еще и...

Дыхание плода. Во внутриутробной жизни плод получает О 2 и удаляет СО 2 исключительно путем плацентарного кровообращения. Однако уже у плода появляются ритмические, дыхательные движения частотой 38–70 в минуту. Эти дыхательные движения сводятся к небольшому расширению грудной клетки, которое сменяется более длительным спадением и еще более длительной паузой. Легкие при этом не расправляются, остаются спавшимися, возникает лишь небольшое отрицательное давление в межплевральной щели в результате отхождения наружного (париетального) листка плевры и увеличения межплевральной щели. Дыхательные движения плода происходят при закрытой голосовой щели, а поэтому в дыхательные пути околоплодная жидкость, не попадает.

Значение дыхательных движений плода: 1) дыхательные движения способствуют увеличению скорости движения крови по сосудам и ее притоку к сердцу, а это улучшает кровоснабжение плода; 2) дыхательные движения плода являются формой тренировки той функции, которая понадобится организму после его рождения.

Дыхание новорожденного. С момента рождения ребенка, еще до пережатия пуповины, начинается легочное дыхание. Легкие полностью расправляются после первых 2–3 дыхательных движений.

Причиной первого вдоха является:

1) избыточное накопление СО 2 и обеднение О 2 крови после прекращения плацентарного кровообращения;

2) изменение условий существования, особенно мощным фактором является раздражение кожных рецепторов (механо- и термоцепторов);

3) разность давления в межплевральной щели и в дыхательных путях, которая при первом вдохе может достигнуть 70 мм водяного столбика (в 10–15 раз больше, чем при последующем спокойном дыхании).

При осуществлении первого вдоха преодолевается значительная упругость легочной ткани, обусловленная силой поверхностного натяжения спавшихся альвеол. При первом вдохе энергии затрачивается в 10–15 раз больше, чем в последующие вдохи. Для растяжения легких еще не дышавших детей давление воздушного потока должно быть примерно в 3 раза больше, чем у детей, перешедших на спонтанное дыхание.

Облегчает первый вдох поверхностно активное вещество – сурфактант, которое в виде тонкой пленки покрывает внутреннюю поверхность альвеол. Сурфактант уменьшает силы поверхностного натяжения и работу, необходимую для вентиляции легких, а также поддерживает в расправленном состоянии альвеолы, предохраняя их от слипания. Это вещество начинает синтезироваться на 6-м месяце внутриутробной жизни. При наполнении альвеол воздухом оно мономолекулярным слоем растекается по поверхности альвеол. У нежизнеспособных новорожденных, погибших от слипания альвеол, обнаружено отсутствие сурфактанта.



Давление в межплевральной щели новорожденного во время выдоха равно атмосферному давлению, во время вдоха уменьшается и становится отрицательным (у взрослых оно отрицательно и во время вдоха, и во время выдоха).

По обобщенным данным, у новорожденных число дыхательных движений в минуту 40–60, минутный объем дыхания – 600–700 мл, что составляет 170–280 мл/мин./кг.

С началом легочного дыхания за счет ускорения кровотока и уменьшения сосудистого русла в системе легочного кровообращения изменяется кровообращение через малый круг. Открытый артериальный (боталлов) проток в первые дни, а иногда недели, может поддерживать гипоксию за счет направления части крови из легочной артерии в аорту, минуя малый круг.

Особенности дыхания у птиц.

Физиологические особенности дыхания у птиц определяются анатомическими особенностями строения их дыхательного аппарата (прежде всего, наличием воздухоносных мешков, отсутствием диафрагмы) и касаются только механизмов внешнего дыхания. Благодаря воздухоносным мешкам, у птиц, в отличие от млекопитающих, возможно двойное дыхание. Смысл его заключается в том, что при вдохе воздух, проходя через легкие, в первый раз отдает кислород и принимает углекислый газ. Далее он поступает в воздухоносные мешки, которые выполняют роль обычных резервуаров. При выдохе воздух, выходя из воздухоносных мешков, во второй раз проходит через легкие, где опять происходит газообмен.

Акт вдоха у птиц совершается при сокращении мышц-инспираторов. При этом грудная, коракоидная кости, ключицы и ребра выдвигаются вперед и вниз, увеличивая угол между позвоночником и грудными частями ребер. В результате этого грудная клетка значительно расширяется, способствуя растяжению легких. Что же касается диафрагмы, она у птиц развита слабо и не имеет того значения, как у млекопитающих.



Частота дыхательных движений у птиц за 1 минуту составляет:куры – 12-45 индейки – 13-20; утки – 30-70 голуби – 15-32; гуси – 12-40.

Голос животных - это рефлекторная реакция, в которой принимают участие носовая и ротовая полость, легкие, гортань с голосовыми связками. Образование звуков связано с дыханием. Здоровые животные формируют свой голос, в то время как больные, и в особенности при заболевании голосового аппарата, обычно утрачивают это свойство. У разных видов сельскохозяйственных животных и птиц анатомическое строение отличается, что сказывается на образовании звука.