Методики развития

Проводящие восходящие и нисходящие пути спинного мозга

) пути головного мозга берут начало в коре полушарий большого мозга и в ядрах ствола мозга. Заканчиваются эти пути либо в ядрах ствола мозга, либо на клетках передних столбов серого вещества спинного мозга.

От клеток двигательной области коры головного мозга двигательные, проекционные волокна идут в составе лучистого венца, corona radiata , и через внутреннюю капсулу выходят за пределы полушарий.

К нисходящим (двигательным, эфферентным) путям относят следующие:

1. Корково-таламические волокна, fibrae corticothalamicae , соединяют кору большого мозга с таламусом.

2. Корково-красноядерные волокна, fibrae corticorubrales , идут от коры лобных долей полушарий большого мозга (область покрышечной части) к красному ядру.

3. Лучистость полосатого тела представляет собой систему волокон, соединяющих клетки коры (экстрапирамидные области лобной и теменной долей большого мозга) с ядрами полосатого тела, и волокон, соединяющих хвостатое и чечевицеобразное ядра с таламусом, которые образуют чечевицеобразные петлю и пучок, ansa et fasciculus lenticulares (см. рис. , ).

4. Корково-мостовые волокна, fibrae corticopontinae (см. рис. ), начинаются в различных отделах коры полушарий большого мозга и заканчиваются в ядрах моста, где берут начало мостомозжечковые волокна, направляющиеся в противоположное полушарие мозжечка. Корково-мостовые волокна подразделяются на лобно-мостовые и теменно-височно-мостовые волокна:

  • лобно-мостовые волокна, fibrae frontopontinae , берут начало в коре лобной доли, проходят в передней ножке внутренней капсулы, в вентральной части ножки мозга и заканчиваются в ядрах моста;
  • теменно-височно-мостовые волокна, fibrae parietotemporopontinae , начинаются в коре теменной и височной долей, проходят в задней ножке внутренней капсулы, в вентральной части ножки мозга и заканчиваются в ядрах моста.

5. Пирамидные пучки, fasciculi pyramidales (некоторые авторы называют их пирамидными путями) (см. рис. , , , ), начинаются от крупных пирамидных клеток двигательной зоны коры полушарий большого мозга (предцентральная извилина), идут в составе лучистого венца, через заднюю ножку внутренней капсулы выходят из полушарий и вступают в ножку мозга. Спускаясь ниже, пирамидные пучки проходят основание ножек мозга, образуя по пути пирамидные возвышения на передней части моста и пирамиды продолговатого мозга.

В составе пирамидных пучков различают корково-ядерные, корково-ретикулярные волокна и корково-спинномозговые пути:

  • корково-ядерные волокна, fibrae corticonucleares , проходят в колене внутренней капсулы, следуют по базальным отделам ножки мозга, моста и продолговатого мозга и заканчиваются в двигательных ядрах черепных нервов противоположной стороны;
  • корково-ретикулярные волокна, fibrae corticoreticulares , следуют от коры к ядрам ретикулярной формации;
  • корково-спинномозговые пути, tractus corticospinales , направляясь в спинной мозг, на границе между продолговатым и спинным мозгом в области перекреста пирамид образуют частичный перекрест: одна часть волокон переходит на противоположную сторону, образуя латеральный корково-спинномозговой [пирамидный] путь, tractus corticospinalis lateralis . Волокна этого пути следуют в боковые канатики белого вещества спинного мозга; другая часть волокон, не перекрещиваясь, направляется в передние канатики белого вещества спинного мозга, образуя передний корково -спинномозговой [пирамидный] путь, tractus corticospinalis ventralis . Перекрест волокон происходит на уровне того сегмента, где они оканчиваются на клетках передних столбов.

Латеральный корково-спинномозговой путь в боковом канатике спинного мозга на всем его протяжении располагается кнутри от заднего спинно-мозжечкового пути и вступает в контакт с клетками передних столбов серого вещества спинного мозга.

Передний корково-спинномозговой путь спускается по переднему канатику белого вещества спинного мозга, занимая его медиальную часть. Часть волокон этого пути переходит посегментно в составе белой спайки спинного мозга на противоположную сторону, где вступает в контакт с клетками передних столбов серого вещества спинного мозга. Меньшая часть волокон может вступать в контакт с клетками передних столбов серого вещества спинного мозга своей стороны.

Волокна, составляющие корково-спинномозговой путь, являются отростками первых нейронов двигательного пути произвольных движений, второй нейрон этого пути – клетки передних рогов серого вещества спинного мозга, отростки которого входят в состав передних корешков спинномозговых нервов.

6. Красноядерно-спинномозговой путь, tractus rubrospinalis (см. рис. , , , ), начинается в красном ядре и направляется в спинной мозг. Нисходящие волокна, отходящие от клеток красного ядра, образуют в среднем мозге перекрест с одноименными волокнами противоположной стороны и, направляясь вниз, проходят ножки мозга, мост и продолговатый мозг.

В спинном мозге волокна красноядерно-спинномозгового пути (см. рис. ) проходят в боковых канатиках белого вещества, кпереди от латерального корково-спинномозгового пути, и вступают в контакт с клетками передних столбов серого вещества спинного мозга.

Красноядерно–спинномозговой путь осуществляет связи экстрапирамидной системы и мозжечка со спинным мозгом.

7. Покрышечно-спинномозговой путь, tractus tectospinalis (см. рис. , , , ), состоит из нисходящих волокон клеток ядер холмиков крыши среднего мозга. Эти волокна в среднем мозге образуют перекрест с волокнами противоположной стороны и, направляясь вниз, проходят в спинном мозге в составе передних канатиков его белого вещества, вступая в контакт с клетками передних столбов серого вещества.

Часть перекрещенных волокон, следующих в составе покрышечно-спинномозгового пути, заканчивается на клетках ядер моста и двигательных ядер черепных нервов. Эти волокна образуют покрышечно-бульбарный путь, tractus tectobulbaris .

8. Преддверно-спинномозговой путь, tractus vestibulospinalis (см. рис. , ), образован нисходящими волокнами латерального вестибулярного ядра. Часть волокон этого пути идет в боковых канатиках белого вещества спинного мозга, образуя боковой преддверно-спинномозговой путь, который располагается вентральнее красноядерно-спинномозгового пути. Другая часть волокон направляется в передний канатик белого вещества спинного мозга и образует передний преддверно-спинномозговой путь.

Наиболее медиально расположенные волокна этого пути обозначают как пучок краевой борозды, fasciculus sulcomarginalis (см. рис. ). Волокна обоих путей вступают в контакт с клетками передних рогов.

9. Луковично-ретикулярно-спинномозговой путь, tractus bulboreticulospinalis (см. рис. ), состоит из аксонов крупных клеток ретикулярной формации продолговатого мозга. Волокна этого пути перекрещиваются, проходят в боковом канатике спинного мозга и контактируют со вставочными и двигательными нейронами передних столбов серого вещества.

10. Мосторетикулярно-спинномозговой путь, tractus pontoreticulospinalis (см. рис. ), образован аксонами клеток ретикулярной формации моста. Волокна этого пути не перекрещиваются. Они спускаются в составе переднего канатика, располагаясь в его медиальной части, и контактируют со вставочными нейронами передних серых столбов. Волокна данного пути в составе передних канатиков спинного мозга обозначают также как ретикулярно-спинномозговой путь, tractus reticulospinalis .

11. Центральный покрышечный путь, tractus tegmentalis centralis (см. рис. , , ), проходит в покрышке среднего мозга латеральнее медиального продольного пучка. Его волокна начинаются главным образом от клеток серого вещества вокруг водопровода мозга, базальных ганглиев, таламуса и красного ядра; направляясь вниз, они связывают указанные структуры с ретикулярной формацией ствола мозга и ядрами нижней оливы.

12. Оливоулитковый путь, tractus olivocochlearis , образован эфферентными волокнами улиткового нерва, иннервирующими спиральный орган. Эти волокна берут начало от верхнее-оливного ядра и направляются к спиральному органу как своей, так и противоположной стороны.

13. Оливоспинномозговой путь, tractus olivospinalis (см. рис. , ), соединяет ядра оливы с двигательными клетками передних столбов верхних шейных сегментов спинного мозга.

Афферентные импульсы, поступающие в спинной мозг из рецепторов, по коротким путям передаются на эфферентные соответствующего сегмента спинного мозга. Одновременно но длинным восходящим проводящим путям афферентные импульсы передаются в головной мозг. К эфферентным нейронам спинного мозга импульсы также поступают не только из афферентных нейронов, но и по нисходящим путям из головного мозга. Таким образом, спинной мозг связан с головным восходящими и нисходящими проводящими путями.

Восходящие проводящие пути . В этих путях находятся нервные волокна либо нейронов спинномозговых узлов, либо нейронов серого вещества задних рогов спинного мозга, с которыми вступают в контакт афферентные нейроны.

Восходящие пути задних столбов . 1. Нежный пучок (пучок Голля). Это наиболее длинные волокна, проводящие афферентные импульсы от рецепторов нижних конечностей и нижней части туловища.

2. Китовидный пучок (пучок Бурдаха). Это волокна, проводящие афферентные импульсы от рецепторов верхних конечностей и верхней части туловища.

Волокна обоих пучков проводят афферентные импульсы из рецепторов кожи (осязания и давления) и проприоцепторов, а также афферентные импульсы из рецепторов внутренних органов, поступающие по чревному, блуждающему и тазовому нервам.

У человека волокна пучка Голля миелинизируются позднее волокон пучка Бурдаха, что связано с более поздним функционированием ног и более ранним функционированием мускулатуры рук и верхней части туловища после рождения. К рождению задние столбы покрыты миелином.

После повреждения задних столбов координация бывает нарушена.

Восходящие пути боковых столбов . 3. Задний спито-мозжечковый путь (пучок Флексига).

4. Передний спинно-мозжечковый путь (пучок Говерса).

Оба нервных пути проводят афферентные импульсы из проприоцепторов в мозжечок. Повреждения этих путей сопровождаются нарушением тонуса и координации движений.

5. Спинно-таламический путь. Боковая часть этого пути проводит импульсы из болевых и температурных рецепторов, а брюшная часть - импульсы из рецепторов осязания и . По спинно-таламическому пути волокна доходят до нейронов зрительных бугров. В боковых столбах содержатся также отдельные нервные волокна, проводящие импульсы из внутренних органов.

Нисходящие проводящие пути . 1. Кортикоспинальный передний, или прямой пирамидный, путь. Перекрещивается в спинном мозге. 2. Кортикоспинальный боковой, или перекрещенный пирамидный путь. Перекрещивается в продолговатом мозге. Не все волокна пирамидного пути перекрещиваются, часть их проходит по одноименной стороне.

Пирамидные пути появляются в филогенезе только у млекопитающих и достигают наивысшего развития у человека.

Так, у собак масса волокон пирамидных путей составляет 10% всего количества белого вещества спинного мозга, у обезьян - 20%, а у человека - почти 30%.

Из двух миллионов нервных волокон, входящих в состав пирамидных путей человека, 40% исходит из нейронов передней центральной извилины, 60% - из нейронов извилин, расположенных впереди нее, а также из задней центральной извилины и других областей. Пирамидные пути на 80% состоят из вегетативных волокон (группы С), проводящих эфферентные импульсы к внутренним органам. В обоих пирамидных путях содержатся толстые миелиновые волокна, быстро проводящие импульсы возбуждения, и гонкие, медленно проводящие. В перекрещенный путь входит 70-90% общего числа волокон.

По пирамидным путям проводятся эфферентные импульсы из коры больших полушарий к моторным нейронам передних рогов спинного мозга, вызывающие и тормозящие сокращения скелетной мускулатуры. Вследствие перекрещивания обоих пирамидных путей каждое большое полушарие головного мозга иннервирует мускулатуру противоположной части тела. Оба пирамидных пути одной половины спинного мозга человека в верхних шейных сегментах содержат волокон больше чем в 2 раза в сравнении с верхним грудным сегментом. Быстрая убыль количества нервных волокон пирамидных путей происходит после их окончания у моторных клеток передних рогов, иннервирующих руки, что связано с огромным значением труда в жизни человека.

Пирамидные пути у человека начинают миелинизироваться через 5-6 месяцев после рождения. Их миелинизация заканчивается к 4-10 годам. Поражение пирамидных путей на одной стороне приводит к параличу мускулатуры одной половины тела: поражения выше перекреста бокового пирамидного пути у человека парализуют произвольные движения на противоположной половине тела, а если ниже, в верхней части шейного отдела, то парализуется та же сторона. Мышцы не перерождаются, и рефлексы не исчезают. Наоборот, спинномозговые рефлексы даже значительно увеличиваются вследствие того, что прекращается задерживающее влияние на них центров головного мозга. Показатель перерыва пирамидных путей - рефлекс Бабинского. В отличие от человека перерезка пирамидных путей у собак и обезьян не лишает их способности к гак называемым произвольным движениям. Это указывает на то, что пирамидные пути играют у человека главную роль в передаче импульсов с коры больших полушарий на моторные нейроны передних рогов спинного мозга. Значительная роль принадлежит и другим путям, которые способны брать на себя функцию пирамидных путей.

3. Руброспинальный путь (пучок Монакова). Состоит из длинных отростков нейронов красного ядра, находящегося в среднем мозге. Ввиду того что красное ядро связано с мозжечком, этот путь может служить нисходящим путем для мозжечка. Так как красное ядро связано также с корой больших полушарий, то при разрушениях пирамидных путей руброспинальные пути проводят двигательные импульсы с коры больших полушарий в спинной мозг.

4. Вестибулоспинальный путь (из вестибулярного аппарата внутреннего уха). Участвует в регуляции мышечного тонуса.

Кроме перечисленных имеются еще другие нисходящие пути, соединяющие промежуточный, средний и продолговатый мозг со спинным мозгом.

Спинальный шок . Шок у животных с постоянной тела состоит в том, что ниже места повреждения спинного мозга отсутствует рецепция, нет гак называемых произвольных движений, мышцы расслаблены и лишены тонуса, отсутствуют все рефлексы, кроме рефлексов на сфинктеры мочевого пузыря и прямой кишки.

Ч. Шеррингтон (1906) считал, что главную роль в явлениях шока играет прекращение притока импульсов из высшего отдела нервной системы и связанных с ним высших рецепторов, поддерживающих возбудимость спинного мозга. Однако после перерезки у собак задней половины спинного мозга или только задних столбов спинальный шок вызывается торможением, которое распространяется по нисходящим путям в часть спинного мозга, расположенную ниже перерезки, вследствие раздражения перерезанных афферентных путей задних столбов (М. Г. Дурмишьян, 1955). Чем выше развито животное, тем большее значение для его жизнедеятельности имеют импульсы из высших рецепторов и поэтому тем резче выражен шок.

По своей физиологии отличается высокой организованностью и специализацией. Именно он проводит множество сигналов от периферических чувствительных рецепторов в мозг и обратно сверху вниз. Это возможно благодаря тому, что есть хорошо организованные пути спинного мозга. Мы рассмотрим некоторые их виды, расскажем, где располагаются проводящие пути спинного мозга, что они содержат.

Спина – зона нашего организма, где располагается позвоночник. В недрах крепких позвонков надежно спрятан мягкий и нежный ствол спинного мозга. Именно в спинном мозге есть уникальные пути, которые состоят из нервных волокон. Они являются главными проводниками информации с периферии к ЦНС. Первым их обнаружил выдающийся русский физиолог, невропатолог, психолог Сергей Станиславович Бехтерев. Он описал их роль для животного и человека, строение, участие в рефлекторной деятельности.

Пути спинного мозга бывают восходящими, нисходящими. Они представлены в таблице.

Виды

Восходящие:

  • Задние канатики. Они образуют целую систему. Это клиновидный и нижний пучки, через которые кожно-механические афферентные и двигательные сигналы проходят в продолговатый мозг.
  • Пути спиноталамические. По ним сигналы от всех рецепторов отправляются в головной мозг к таламусу.
  • Спиномозжечковые проводят импульсы в мозжечок.

Нисходящие:

  • Кортикоспинальный (пирамидный).
  • Пути экстрапирамидные, которые обеспечивают связь ЦНС со скелетными мышцами.

Функции

Проводящие пути спинного мозга образованы аксонами – окончаниями нейронов. Анатомия их состоит в том, что аксон очень длинный и соединяется с другими нервными клетками. Проекционные проводящие пути головного и спинного мозга проводят огромное количество нервных сигналов от рецепторов к ЦНС.

В этом сложном процессе участвуют нервные волокна, расположенные практически по всей длине спинного мозга. Сигнал проводится между нейронами и от разных отделов ЦНС к органам. Проводящие пути спинного мозга, схема которых достаточно запутана, обеспечивают беспрепятственное прохождение сигнала от периферии в ЦНС.

Они состоят в основном из аксонов. Эти волокна способны создавать связи между сегментами спинного мозга, находятся лишь в нем и не выходят за его пределы. Так обеспечивается контроль эффекторных органов.

Самая простая нейронная сеть – это рефлекторные дуги, которые обеспечивают вегетативный и соматический процессы. Первоначально нервный импульс возникает в окончании рецептора. Далее участвуют волокна чувствительного, вставочного и моторного нейрона.

Нейроны проводят сигнал в своем сегменте, а также обеспечивают его обработку и реакцию ЦНС на раздражение определенного рецептора.

В наших мышцах, органах, сухожилиях, рецепторах каждую секунду возникают сигналы, которые требуют немедленной обработки со стороны ЦНС. Туда они проводятся по специальным канатикам спинного мозга. Эти пути называют чувствительными или восходящими. Восходящие пути спинного мозга соединяются с рецепторами по периферии всего тела. Их образуют аксоны нейронов чувствительного типа. Тела этих аксонов расположены в спинальных ганглиях. Также участвуют вставочные нейроны. Их тела расположены в задних рогах (спинной мозг).

Как рождается осязание

Волокна, которые обеспечивают чувствительность, проходят разный путь. Например, от проприорецепторов пути направляются в мозжечок, кору. В эту область они направляют сигнал о том, в каком состоянии находятся суставы, сухожилия, мышцы.

Этот путь составляют аксоны нейронов чувствительного типа. Афферентный нейрон обрабатывает полученный сигнал и при помощи аксона проводит его к таламусу. После обработки в таламусе информация о двигательном аппарате направляется к постцентральной зоне коры. Тут происходит формирование ощущений о том, насколько напряжены мышцы, в каком положении находятся конечности, под каким углом согнуты суставы, есть ли вибрация, пассивные движения.

В тонком пучке также есть волокна, которые связаны с кожными рецепторами. Они проводят сигнал, который формирует информацию о тактильной чувствительности при вибрации, давлении, прикосновении.

Аксоны вторых вставочных нейронов образуют другие чувствительные пути. Область расположения тел этих нейронов – задние рога (спинной мозг). В своих сегментах эти аксоны создают перекрест, потом они по противоположной стороне направляются к таламусу.

В этом пути есть волокна, которые обеспечивают температурную, болевую чувствительность. Также здесь находятся волокна, которые участвуют в чувствительности тактильной. , расположенные в спинном мозге, воспринимают информацию от структур головного мозга.

Экстрапирамидные нейроны участвуют в образовании руброспинального, ретикулоспинального, вестибулоспинального, тектоспинального путей. По всем перечисленным путям проходят нервные эфферентные импульсы. Они отвечают за поддержание мышц в тонусе, выполнение различных непроизвольных движений, позу. В этих процессах участвуют приобретенные или врожденные рефлексы. В перечисленных путях происходит формирование условий для выполнения всех произвольных движений, которыми управляет кора головного мозга.

Спинной мозг проводит все сигналы, которые поступают от центров ВНС к нейронам, которые составляют симпатическую нервную систему. Эти нейроны располагаются в боковых рогах спинного мозга.

Также в процессе участвуют нейроны из парасимпатической нервной системы, которые локализуются тоже в спинном мозге (сакральный отдел). На указанные пути возложена функция поддержания в тонусе симпатической нервной системы.

Симпатическая и парасимпатическая нервные системы

Значение симпатической нервной системы трудно переоценить. Без нее невозможна работа сосудов, сердца, ЖКТ, всех внутренних органов.

Парасимпатическая система обеспечивает функционирование органов малого таза.

Чувство боли – одно из важнейших для нашей жизнедеятельности. Разберемся в том, как происходит процесс передачи сигнала через тройничный нерв.

Там, где моторные волокна кортикоспинального тракта перекрещиваются, до шейного отдела проходит спинальное ядро одного из самых крупных нервов – тройничного. Через область продолговатого мозга к его нейронам нисходят аксоны чувствительных нейронов. Именно от них отправляется в ядро сигнал о боли в зубах, челюстях, полости рта. Через тройничный нерв проходят сигналы от лица, глаз, глазниц.

Тройничный нерв крайне важен для получения тактильных ощущений от области лица, ощущения температуры. Если он поврежден, человек начинает страдать от сильнейшей боли, которая постоянно возвращается. Тройничный нерв очень крупный, он состоит из множества афферентных волокон и ядра.

Нарушения проводимости и их последствия

Случается так, что пути проведения сигналов могут нарушаться. Причины таких нарушений разные: опухоли, кисты, травмы, заболевания и т.д. Проблемы могут наблюдаться в разных зонах СМ. В зависимости от того, какая зона поражена, человек теряет чувствительность определенной части своего тела. Также могут появляться сбои опорно-двигательного аппарата, а при тяжелых поражениях больного может парализовать.

Крайне важно знать строение афферентных путей, ведь это позволяет определить, в какой зоне случилось повреждение волокон. Достаточно определить, в какой части тела нарушилась чувствительность или движения, чтобы сделать вывод, в каком пути мозга случилась проблема.

Мы достаточно схематично описали анатомию путей спинного мозга. Важно понять, что именно они ответственны за проведение сигналов от периферии нашего организма к ЦНС. Без них невозможно обработать информацию от зрительных, слуховых, обонятельных, тактильных, двигательных и других рецепторов. Без локомоторной функции нейронов и путей невозможно было бы совершить самое простое рефлекторное движение. Также они отвечают за работу внутренних органов, систем.

Пути спинного мозга лежат вдоль всего позвоночника. Они способны образовывать сложную и очень эффективную систему по обработке огромного количества поступающей информации, брать самое активное участие в мозговой деятельности. Важнейшую роль при этом выполняют направленные вниз, вверх и в стороны аксоны. Эти отростки преимущественно и составляют белое вещество.

Основные проводящие пути спинного мозга

Не ставя перед собой задачи перечислить все проводящие пути ЦНС, рассмотрим основные принципы организации этих путей на примере наиболее важных из них (рис. 30). Проводящие пути в ЦНС делятся на:

восходящие - образуются аксонами клеток, тела которых расположены в сером веществе спинного мозга. Эти аксоны в составе белого вещества направляются к верхним отделам спинного мозга, стволу головного мозга и коре больших полушарий.

нисходящие – образуются аксонами клеток, тела которых расположены в различных ядрах головного мозга. Эти аксоны по белому веществу спускаются к различным спинальным сегментам, заходят в серое вещество и оставляют свои окончания на тех или иных его клетках.

Отдельную группу образуют проприоспинальные проводящие пути. Они могут быль как восходящими, так и нисходящими, но они не выходят за пределы спинного мозга. Пройдя несколько сегментов, они вновь возвращаются в серое вещество спинного мозга. Эти пути расположены в самой глубокой части латерального и вентрального канатиков, они связывают между собой различные нервные центры спинного мозга. Например, центры нижних и верхних конечностей.

Восходящие проводящие пути.

Тракты Голля (тонкий пучок) и Бурдаха (клиновидный пучок). Основные восходящие пути проходят через дорсальные канатики спинного мозга и представляют собой аксоны афферентных нейронов спинномозговых ганглиев . Они проходят по всему спинному мозгу и заканчиваются в области продолговатого мозга в ядрах дорсального канатика, которые называют ядрами Голля и Бурдаха. Поэтому они и именуются тракт Голля и тракт Бурдаха .

1. Первое звено нейронов:

a. Волокна, расположенные в канатике медиальнее несут к ядру Голля афферентные сигналы от нижней части тела, в основном от нижних конечностей.

b. Волокна, расположенные латеральнее, идут к ядру Бурдаха и передают афферентные сигналы от рецепторов верхней части туловища и передних конечностей.

2. Второе звено нейронов:

В свою очередь аксоны клеток ядер Голля и Бурдаха в стволе головного мозга перекрещиваются и в виде плотного пучка поднимаются до промежуточного мозга. Этот пучок волокон, образованный уже аксонами клеток ядер Голля и Бурдаха получил название медиальной петли .

3. Третье звено нейронов :

Клетки ядер промежуточного мозга дают аксоны, направляющиеся в кору больших полушарий.

Все остальные восходящие пути начинаются не от нейронов спинномозговых ганглиев, а от нейронов, расположенных в сером веществе спинного мозга . Следовательно, их волокна являются волокнами не первого, а второго порядка.

1. Первым звеном в этих путях также служат нейроны спинномозговых ганглиев, но в сером веществе они оставляют свои окончания на клетках как бы «второго звена».

Клетки этого «второго звена» посылают свои аксоны к ядрам ствола головного мозга и коре больших полушарий. Основная масса волокон этих путей проходит в латеральном канатике.

Спинно-таламические пути (вентральный и латеральный) .

2. Второе звено нейронов:

Начинается в основании дорсального рога спинного мозга. Аксоны нейронов, образующих этот путь переходят на контралатеральную (противоположную) сторону, входят в белое вещество противоположного латерального или вентрального канатика и в нем поднимаются через весь спинной мозг и ствол головного мозга вплоть до ядер промежуточного мозга.

2. Третье звено нейронов :

Нейроны ядер промежуточного мозга переносят импульсацию в кору больших полушарий.

Все вышеописанные пути (Голля, Бурдаха и спинно-таламический) связывают рецептивные области каждой стороны тела с нейронами коры противоположного полушария.

Спинно-мозжечковые тракты. Еще два пути, проходящие в латеральных канатиках связывают спинной мозг с корой мозжечка .

Путь Флексинга – расположен дорсальнее и содержит волокна, непереходящие на противоположную сторону мозга. Это путь в спинном мозге начинается от нейронов ядра Кларка, аксоны которых достигают продолговатого мозга и поступают в мозжечок через нижнюю ножку мозжечка.

Путь Говерса – расположен вентральнее, содержит волокна, которые поднимаются вверх по латеральному канатику противоположной стороны тела, но в стволе мозга эти волокна снова перекрещиваются и входят в кору мозжечка с той стороны, на которой этот путь начинался. В спинном мозге начинается от ядер промежуточной зоны, аксоны вступают в мозжечок через верхнюю ножку мозжечка.

Если кора больших полушарий мозга всегда связана с афферентными волокнами противоположной стороны тела, то кора мозжечка получает волокна преимущественно от нейронных структур одноименной стороны.

Нисходящие проводящие пути. Волокна, идущие в нисходящем направлении, также подразделяются на несколько путей. В основе названия этих путей лежат названия тех отделов мозга, в которых они берут свое начало.

Кортико-спинальные (латеральный и вентральный) пути образованы аксонами пирамидных клеток нижних слоев моторной зоны коры больших полушарий. Часто эти пути называют пирамидными . Волокна проходят через белое вещество больших полушарий , основание ножек среднего мозга , по вентральным отделам Варолиева моста и продолговатого мозга в спинной мозг.

o Латеральный путь перекрещивается в нижней части пирамид продолговатого мозга и заканчивается на нейронах основания заднего рога.

o Вентральный путь пересекает пирамиды продолговатого мозга не перекрещиваясь. Перед вступлением в передний рог серого вещества соответствующего сегмента спинного мозга волокна этого пути переходят на противоположную сторону и заканчиваются на мотонейронах передних рогов контралатеральной стороны.

Таким образом, так или иначе, но двигательная область коры больших полушарий всегда оказывается связанной с нейронами противоположной стороны спинного мозга.

Рубро-спинальный путь – основной нисходящий путь среднего мозга , начинается в красном ядре . Аксоны нейронов красного ядра перекрещиваются сразу под ним и в составе белого вещества латерального канатика спускаются к сегментам спинного мозга, заканчиваясь на клетках промежуточной области серого вещества. Это связано с тем, что руброспинальная система наряду с пирамидной является основной системой контроля деятельности спинного мозга.

Текто-спинальный путь – Берет начало от нейронов четверохолмия среднего мозга и достигает мотонейронов передних рогов.

Проводящие пути, начинающиеся в продолговатом мозге:

Вестибуло-спинальный – начинается от вестибулярных ядер, главным образом от клеток ядра Дейтерса.

Ретикуло-спинальный – начинается от обширного скопления нервных клеток ретикулярной формации, занимающей центральную часть ствола мозга. Волокна каждого из этих путей заканчиваются на нейронах медиальной части переднего рога серого вещества спинного мозга. Основная часть окончаний располагаются на вставочных клетках.

Оливо-спинальный - образован аксонами клеток олив продолговатого мозга, заканчивается на мотонейронах передних рогов спинного мозга.

Раздел 4

ГОЛОВНОЙ МОЗГ


Белое вещество спинного мозга окружает серое вещество и образует столбы спинного мозга. Различают передние, задние и боковые столбы. Столбы - это тракты спинного мозга, образованные длинными аксонами нейронов, идущими вверх по направлению к головному мозгу (восходящие пути) либо вниз - от головного мозга к ниже расположенным сегментам спинного мозга (нисходящие пути).
По восходящим путям спинного мозга передается информация от рецепторов мышц, сухожилий, связок, суставов и кожи к головному мозгу. Восходящие пути являются также проводниками температурной и болевой чувствительности. Все восходящие пути перекрещиваются на уровне спинного (или головного) мозга. Таким образом, левая половина головного мозга (кора полушарий и мозжечок) получают информацию от рецепторов правой половины тела и наоборот.

Основные восходящие пути: от механорецепторов кожи и рецепторов опорно-двигательного аппарата - это мышцы, сухожилия, связки, суставы - пучки Гол- ля и Бурдаха или соответственно они же - нежный и клиновидный пучки представлены задними столбами спинного мозга (рис. 17 А).
От этих же рецепторов информация поступает в мозжечок по двум путям, представленным боковыми столбами, которые называются передним и задним спинномозжечковыми трактами. Кроме того, в боковых столбах проходят еще два пути - это боковой и передний спинно-таламические пути, передающие информацию от рецепторов температурной и болевой чувствительности.
Задние столбы обеспечивают более быстрое проведение информации о локализации раздражений, чем боковой и передний спинно-таламические пути.
Нисходящие пути, проходя в составе передних и боковых столбов спинного мозга, являются двигательными, так как они влияют на функциональное состояние скелетных мышц тела. Пирамидный путь начинается в основном в двигательной коре полушарий и проходит по продолговатому мозгу, где большая часть волокон перекрещивается и переходит на противоположную сторону. После этого пирамидный путь разделяется на боковой и передний пучки: соответственно передний и боковой пирамидные пути. Большинство волокон пирамидных путей оканчивается на вставочных нейронах, а около 20% образуют синапсы на мотонейронах. Пирамидное влияние является возбуждающим.
Ретикуло-спинальный путь, руброспинальный путь и вестибулоспинальный путь (экстрапирамидная система) начинаются соответственно от ядер ретикулярной формации, ствола мозга, красных ядер среднего мозга и вестибулярных ядер продолговатого мозга. Эти пути проходят в боковых столбах спинного мозга, участвуют в координации движений и обеспечении мышечного тонуса. Экстрапирамидные пути, так же как и пирамидные, являются перекрещенными (рис. 17 Б).
Таким образом, спинной мозг осуществляет две важнейшие функции: рефлекторную и проводниковую. Рефлекторная функция осуществляется за счет двигательных центров спинного мозга: мотонейроны перед-

Днатимия ивранаЯ системы
1

А

Рис. 17 А-Б

А - Восходящие пути спиниого мозга:

  1. - пучок Голля;
  2. - пучок Бурдаха;
  3. - дорсальный спинно-мозжечковый тракт;
  4. - вентральный спинно-мозжечковый тракт;
  5. - передний спинно-таламический путь;
  6. - латеральный спинно-таламический путь.
Б - Главные нисходящие спинно-мозговые пути:
пирамидной (латеральный и передний кортикоспинальные пути) и экстрапирамидной (руброспинальные, ретикулоспи- нальные и вестибулоспинальные пути) систем.


А к мышцам-сгибателям к мышцам-сгибателям
и разгибателям и разгибателям

А - дуги сгибательного и перекрестного разгибательного рефлексов; Б - элементарная схема безусловного рефлекса. Нервные импульсы, возникающие при раздражении рецептора (Р), по афферентным волокнам (афф. нерв, показано одно такое волокно) идут к спинному мозгу (1), где через вставочный нейрон передаются на эфферентные волокна (эфф. нерв), по которым доходят до эффектора. Пунктирные линии - распространение возбуждения от низших отделов центральной нервной системы на ее вышерасположенные отделы (2, 3, 4) до коры мозга (5) включительно. Наступающее вследствие этого изменение состояния высших отделов мозга, в свою очередь, воздействует (см. стрелки) на эфферентный нейрон, влияя на конечный результат рефлекторного ответа.

Диетам» npml системы

Рис. 19. Схема проводящих путей спинного мозга:
Нисходящие пути:
А - пирамидный или кортикоспинальный;
Б - экстрапирамидная система
Руброспинальный и ретикулоспинальный пути, входящие в состав мультинейронного экстрапирамидного пути, идущего от коры больших полушарий к спинному мозгу;
Восходящие пути: В - передний спинно-таламический тракт
По этому пути в соматосенсорную кору поступает информация от рецепторов давления и прикосновения, а также от болевых и температурных;
Г - латеральный спинно-таламический тракт По этому пути информация от болевых и температурных рецепторов поступает к обширным областям коры головного мозга.

5

  1. - двигательная кора;
  2. - средний мозг;
  3. - пирамидный путь;
  4. - продолговатый мозг;
  5. - боковой кортикоспинальный путь;
  6. - передний кортикоспинальный путь;
  7. - диффузные проекции на кору;
  8. - межпластиночные ядра таламуса;
  9. - латеральный спинно-таламический путь;
  10. - соматосенсорная кора;
  11. - вентробазальный комплекс таламуса;
  12. - медиальная петля;
  13. - красное ядро;
  14. - мост;
  15. - ретикулярная формация;
  16. - руброспинальный путь;
  17. - ретикулоспинальный путь;
  18. - спинной мозг.
Днатвмия itpginH системы
них рогов обеспечивают работу скелетных мышц туловища. При этом поддерживается сохранение мышечного тонуса, координация работы мышц сгибателей- разгибателей, лежащих в основе движений, и сохранение постоянства позы тела и его частей (см. рис. 18, стр. 39). Мотонейроны, расположенные в боковых рогах грудных сегментов спинного мозга, обеспечивают дыхательными движениями (вдох-выдох), регулируя работу межреберных мышц. Мотонейроны боковых рогов поясничного и крестцового сегментов представляют двигательные центры гладких мышц, входящих в состав внутренних органов. Это центры мочеиспускания, дефекации, работы половых органов.
Проводниковую функцию выполняют спинномозговые тракты (см. рис. 19, стр. 40 - 41).