Запоминание информации

Основные зрительные функции и методы их исследования у детей. Возрастное изменение зрения Функции зрения возрастные особенности метод исследования

В развитии зрительного анализатора после рождения выделяют 5 периодов:

  1. формирование области желтого пятна и центральной ямки сетчатки в течение первого полугодия жизни - из 10 слоев сетчатки остаются в основном 4 (зрительные клетки, их ядра и пограничные мембраны);
  2. увеличение функциональной мобильности зрительных путей и их формирование в течение первого полугодия жизни
  3. совершенствование зрительных клеточных элементов коры и корковых зрительных центров в течение первых 2 лет жизни;
  4. формирование и укрепление связей зрительного анализатора с другими органами в течение первых лет жизни;
  5. морфологическое и функциональное развитие черепных нервов в первые 2-4 мес жизни.

Становление зрительных функций ребенка происходит соответственно этим этапам развития.

Анатомические особенности

Кожа век у новорожденных очень нежная, тонкая, гладкая, без складок, через неё просвечивает сосудистая сеть. Глазная щель узкая и соответствует размеру зрачка. Ребенок мигает в 7 раз реже по сравнению с взрослыми (2- 3 мигания в минуту). Во время сна часто нет полного смыкания век и видна голубоватая полоска склеры. К 3 мес после рождения увеличивается подвижность век, ребенок мигает 3-4 раза в минуту, к 6 мес - 4-5, а к 1 году - 5- 6 раз в минуту. К 2 годам глазная щель увеличивается, приобретает овальную форму в результате окончательного формирования мышц век и увеличения глазного яблока. Ребенок мигает 7-8 раз в минуту. К 7-10 годам веки и глазная щель соответствуют показателям взрослых, ребенок мигает 8-12 раз в минуту.

Слезная железа начинает функционировать лишь через 4-6 нед и более после рождения, дети в это время плачут без слез. Однако слезные добавочные железки в веках сразу продуцируют слезу, что хорошо определяется по выраженному слезному ручейку вдоль края нижнего века. Отсутствие слезного ручейка расценивается как отклонение от нормы и может быть причиной развития дакриоциститов. К 2-3-месячному возрасту начинается нормальное функционирование слезной железы и слезоотделение. При рождении ребенка слезоотводящие пути в большинстве случаев уже сформированы и проходимы. Однако примерно у 5% детей нижнее отверстие слезно-носового канала открывается позже или вообще не открывается, что может служить причиной развития дакриоцистита новорожденного.

Глазница (орбита) у детей до 1 года относительно мала, поэтому создается впечатление больших глаз. По форме глазница новорожденных напоминает трехгранную пирамиду, основания пирамид имеют конвергентное направление. Костные стенки, особенно медиальная, очень тонкие и способствуют развитию коллатеральных отеков клетчатки глазницы (целлюлиты). Горизонтальный размер глазниц новорожденного больше вертикального, глубина и конвергенция осей глазниц меньше, что создает порой впечатление сходящегося косоглазия. Размеры глазниц составляют около 2/3 соответствующих размеров глазниц взрослого человека. Глазницы новорожденного площе и мельче, поэтому хуже защищают глазные яблоки от травм и создают впечатление высто- яния глазных яблок. Глазные щели у детей шире из-за недостаточного развития височных крыльев клиновидных костей. Зачатки зубов расположены ближе к содержимому глазницы, что облегчает попадание в нее одонтогенной инфекции. Формирование глазницы заканчивается к 7-летнему возрасту, к 8- 10 годам анатомия глазницы приближается к таковой взрослых людей.

Конъюнктива новорожденного тонкая, нежная, недостаточно влажная, со сниженной чувствительностью, может легко травмироваться. К 3-месячному возрасту она становится более влажной, блестящей, чувствительной. Выраженная влажность и рисунок конъюнктивы могут быть признаком воспалительных заболеваний (конъюнктивит, дакриоцистит, кератит, увеит) или врожденной глаукомы.

Роговица новорожденных прозрачная, но в ряде случаев в первые дни после рождения она бывает несколько тусклой и как бы опалесцирует. В течение 1 нед эти изменения бесследно исчезают, роговица становится прозрачной. Следует отличать эту опалесценцию от отека роговицы при врожденной глаукоме, которая снимается инсталляцией гипертонического раствора (5%) глюкозы. Физиологическая опалесценция не исчезает при закапывании этих растворов. Очень важно проводить замеры диаметра роговицы, так как его увеличение является одним из признаков глаукомы у детей. Диаметр роговицы новорожденного равен 9-9,5 мм, к 1 году увеличивается на 1 мм, к 2-3 годам - еще на 1 мм, к 5 годам он достигает диаметра роговицы взрослого человека - 11,5 мм. У детей до 3-месячного возраста чувствительность роговицы резко снижена. Ослабление корнеального рефлекса приводит к тому, что ребенок не реагирует на попадание инородных тел в глаз. Частые осмотры глаз у детей этого возраста имеют важное значение для профилактики кератитов.

Склера новорожденного тонкая, с голубоватым оттенком, который постепенно исчезает к 3-летнему возрасту. Следует внимательно относиться к данному признаку, так как голубые склеры могут быть признаком заболеваний и растяжения склеры при повышении внутриглазного давленш при врожденной глаукоме.

Передняя камера у новорожденных мелкая (1,5 мм), угол передней камерк очень острый, корень радужки имеет аспидный цвет. Полагают, что такой цвет обусловлен остатками эмбриональной ткани, которая полностью рассасывается к 6-12 мес. Угол передней камеры постепенно раскрывается и к 7 годам становится таким же, как у взрослых людей.

Радужка у новорожденных голубовато-серого цвета из-за малого количества пигмента, к 1 году начинает приобретать индивидуальную окраску. Цвет радужки окончательно устанавливается к 10-12-летнему возрасту. Прямая и содружественная реакции зрачка у новорожденных выражены не очень отчетливо, зрачки плохо расширяются медикаментами. К 1 году реакция зрачка становится такой же, как у взрослых.

Цилиарное тело в первые 6 мес находится в спастическом состоянии, что обусловливает миопическую клиническую рефракцию без циклоплегии и резкое изменение рефракции в сторону гиперметропической после инсталляций 1% раствора гоматропина.

Глазное дно у новорожденных бледно-розового цвета, с более или менее выраженной паркетностью и множеством световых бликов. Оно менее пигментировано, чем у взрослого, сосудистая сеть просматривается четко, пигментация сетчатки часто мелкоточечная или пятнистая. По периферии сетчатка сероватого цвета, периферическая сосудистая сеть незрелая. У новорожденных диск зрительного нерва бледноват, с синевато-серым оттенком, что можно ошибочно принять за его атрофию. Рефлексы вокруг желтого пятна отсутствуют и появляются в течение 1-го года жизни. В течение первых 4-6 мес жизни глазное дно приобретает вид, почти идентичный глазному дну взрослого человека, к 3 годам отмечается покраснение тона глазного дна. В диске зрительного нерва сосудистая воронка не определяется, она начинает формироваться к 1 году и завершается к 7-летнему возрасту.

Функциональные особенности

Особенностью деятельности нервной системы ребенка после рождения является преобладание подкорковых образований. Головной мозг новорожденного еще недостаточно развит, дифференцировка коры и пирамидных путей не закончена. Вследствие этого у новорожденных отмечается склонность к диффузным реакциям, к их генерализации и иррадиации и вызываются такие рефлексы, которые у взрослых бывают только при патологии.

Указанная способность центральной нервной системы новорожденного оказывает существенное влияние и на деятельность-сенсорных систем, в частности зрительной. При резком и внезапном освещении глаз могут возникнуть генерализованные защитные рефлексы - вздрагивание тела и феномен Пейпера, который выражается в сужении зрачка, смыкании век и сильном откидывании головы ребенка назад. Главные рефлексы появляются и при раздражении других рецепторов, в частности тактильного. Так, при интенсивном почесывании кожи расширяются зрачки, при легком постукивании по носу - закрываются веки. Наблюдается также феномен "кукольных глаз", при котором глазные яблоки двигаются в направлении, обратном пассивному движению головы.

В условиях освещения глаз ярким светом возникают мигательный рефлекс и отведение глазных яблок кверху. Такая защитная реакция органа зрения на действие специфического раздражителя обусловлена, очевидно, тем, что зрительная система - единственная из всех сенсорных систем, на которую адекватная афферентация действует только после рождения ребенка. Требуется некоторое привыкание к свету.

Как известно, остальные афферентации - слуховые, тактильные, интероцептивные и проприоцептивные - оказывают свое влияние на соответствующие анализаторы еще в период внутриутробного развития. Однако следует подчеркнуть, что в постнатальном онтогенезе зрительная система развивается ускоренными темпами и визуальная ориентировка вскоре опережает слуховую и тактильно-проприоцептивную.

Уже при рождении ребенка отмечается ряд безусловных зрительных рефлексов - прямая и содружественная реакция зрачков на свет, кратковременный ориентировочный рефлекс поворота обоих глаз и головы к источнику света, попытка слежения за движущимся объектом. Однако расширение зрачка в темноте происходит медленнее, чем его сужение на свету. Это объясняют недоразвитием в раннем возрасте дилататора радужки или иннервирующего эту мышцу нерва.

На 2-3-й неделе в результат появления условнорефлекторных связей начинается усложнение деятельности зрительной системы, формирование и совершенствование функций предметного, цветового и пространственного зрения.

Таким образом, световая чувствительность появляется сразу после рождения. Правда, под действием света у новорожденного не возникает даже элементарный зрительный образ, и вызываются в основном неадекватные общие и местные защитные реакции. Вместе с тем с самых первых дней жизни ребенка свет оказывает стимулирующее действие на развитие зрительной системы в целом и служит основой формирования всех ее функций.

С помощью объективных методов регистрации изменений зрачка, а также других видимых реакций (например, рефлекса Пейпера) на свет разной интенсивности удалось получить некоторое представление об уровне светоощущения у детей раннего возраста. Чувствительность глаза к свету, измеренная по пупилломоториой реакции зрачка с помощью пупиллоскопа, увеличивается в первые месяцы жизни и достигает такого же уровня, как у взрослого, в школьном возрасте.

Абсолютная световая чувствительность у новорожденных резко снижена, причем в условиях темновой адаптации она в 100 раз выше, чем при адаптации к свету. К концу первого полугодия жизни ребенка световая чувствительность существенно повышается и соответствует 2/3 ее уровня у взрослого. При исследовании зрительной темновой адаптации у детей 4-14 лет установлено, что с возрастом уровень адаптационной кривой увеличивается и к 12-14 годам становится почти нормальным.

Пониженную световую чувствительность у новорожденных объясняют недостаточным развитием зрительной системы, в частности сетчатки, что косвенно подтверждают результаты электро-ретинографии. У детей младшего возраста форма электроретинограммы близка к обычной, но амплитуда ее понижена. Последняя зависит от интенсивности света, падающего на глаз: чем интенсивнее свет, тем больше амплитуда электроретиноттраммы.

J. Francois и A. de Rouk (1963) установили, что волна а в первые месяцы жизни ребенка ниже нормальной и достигает обычной величины после 2 лет.

  • Фотопическая волна b 1 развивается еще медленнее и в возрасте старше 2 лет еще имеет низкое значение.
  • Скотопическая волна b 2 при слабых стимулах у детей от 2 до 6 лет значительно ниже, чем у взрослых.
  • Кривые волн а и b при сдвоенных импульсах довольно значительно отличаются от кривых, наблюдаемых у взрослых.
  • Рефрактерный период в начале более короткий.

Форменное центральное зрение появляется у ребенка только на 2-З-м месяце жизни. В дальнейшем происходит его постепенное совершенствование - от способности обнаруживать предмет до способности его различать и распознавать. Возможность различать простейшие конфигурации обеспечивается соответствующим уровнем развития зрительной системы, тогда как распознавание сложных образов связано с интеллектуализацией зрительного процесса и требует обучения в психологическом смысле этого слова.

С помощью изучения реакции ребенка на предъявление предметов разной величины и формы, (способности их дифференцировки при выработке условных рефлексов, а также реакции оптокинетического нистагма удалось получить сведения о форменном зрении у детей даже раннего возраста. Так, установлено, что

  • на 2-3-м месяце замечает грудь матери,
  • на 4 -6-м месяце жизни ребенок реагирует на появление обслуживающих его лиц,
  • на 7-10-м месяце у ребенка появляется способность распознавать геометрические формы (куб, пирамида, конус, шар), а
  • на 2-3-м году жизни нарисованные изображения предметов.

Совершенное восприятие формы предметов и нормальная острота зрения развиваются у детей только в период школьного обучения.

Параллельно развитию форменного зрения идет становление цветоощущения , которое также в основном является функцией колбочкового аппарата сетчатки. С помощью условнорефлекторной методики установлено, что способность дифференцировать цвет впервые появляется у ребенка в возрасте 2-6 мес. Отмечают, что различение цветов начинается прежде всего с восприятия красного цвета, возможность же распознавать цвета коротковолновой части спектра (зеленый, синий) появляется позже. Это связано, очевидно, с более ранним формированием приемников красного цвета по сравнению с приемниками других цветов.

К 4-5 годам цветовое зрение у детей уже хорошо развито, но продолжает совершенствоваться и в дальнейшем. Аномалии цветоощущения у них встречаются приблизительно с такой же частотой и в таких же количественных соотношениях между лицами мужского и женского пола, как и у взрослых.

Границы ноля зрения у детей дошкольного возраста примерно на 10% уже, чем у взрослых. В школьном возрасте они достигают нормальных величин. Размеры слепого пятна по вертикали и горизонтали, определенные при кампиметрическом исследовании с расстояния 1 м, у детей в среднем на 2-3 см больше, чем у взрослых.

Для возникновения бинокулярного зрения необходима функциональная взаимосвязь между обеими половинами зрительного анализатора, а также между оптическим и двигательным аппаратами глаз. Бинокулярное зрение развивается позднее других зрительных функций.

Вряд ли можно говорить о наличии истинного бинокулярного зрения, т. е. о способности сливать два монокулярных изображения в единый зрительный образ, у детей грудного возраста. У них появляется только механизм бинокулярной фиксации объекта как основа развития бинокулярного зрения.

Для того чтобы объективно судить о динамике развития бинокулярного зрения у детей, можно использовать пробу с призмой. Возникающее при этой пробе установочное движение свидетельствует о том, что имеется один из основных компонентов объединенной деятельности обоих глаз - фузионный рефлекс . Л. П. Хухрина (1970), использовав эту методику, установила, что способностью перемещать сдвинутое в одном из глаз изображение на центральную ямку сетчатки обладает 30% детей первого года жизни. Частота феномена с возрастом увеличивается и на 4-м году жизни достигает 94,1%. При исследовании с помощью цветового прибора бинокулярное зрение на З-м и 4-м году жизни было выявлено соответственно у 56,6 и 86,6% детей.

Главная особенность бинокулярного зрения состоит, как известно, в более точной оценке третьего пространственного измерения - глубины пространства. Средняя величина порога бинокулярного глубинного зрения у детей 4-10 лет постепенно уменьшается. Следовательно, по мере роста и развития детей оценка пространственного измерения становится все более точной.

Можно выделить следующие основные этапы развития пространственного зрения у детей. При рождении ребенок сознательного зрения не имеет. Под влиянием яркого света у него суживается зрачок, закрываются веки, голова толчкообразно откидывается назад, но глаза при этом бесцельно блуждают независимо друг от друга.

Через 2-5 нед после рождения сильное освещение уже побуждает ребенка удерживать глаза относительно неподвижно и пристально смотреть на световую поверхность. Действие света особенно заметно, если: он попадает на центр сетчатки, который к этому времени развивается в высокоценный участок, позволяющий получать наиболее детальные и яркие впечатления. К концу первого месяца жизни оптическое раздражение периферии сетчатки вызывает рефлекторное движение глаза, в результате которого световой объект воспринимается центром сетчатки.

Эта центральная фиксация вначале совершается мимолетно и только на одной стороне, но постепенно в связи с повторением она становится устойчивой я двусторонней. Бесцельное блуждание каждого глаза сменяется согласованным движением обоих глаз. Возникают конвергентные и привязанные к ним фузионные движения, формируется физиологическая основа бинокулярного зрения - оптомоторный механизм бификсации. В этот период средняя острота зрения у ребенка (измеренная по оптокинетическому нистагму) составляет примерно 0,1, к 2 годам она повышается до 0,2-0,3 и только к 6-7 годам достигает 0,8- 1,0.

Таким образом, (бинокулярная зрительная система формируется, несмотря на еще явную неполноценность монокулярных зрительных систем, и опережает их развитие. Это происходит, очевидно, для того, чтобы в первую очередь обеспечить пространственное восприятие, которое в наибольшей мере способствует совершенному приспособлению организма к условиям внешней среды. К тому времени, когда высокое фовеальное зрение предъявляет все более строгие требования к аппарату бинокулярного зрения, он уже бывает достаточно развит.

В течение 2-го месяца жизни ребенок начинает осваивать ближнее пространство. В этом принимают участие зрительные, проприоцептивные и тактильные раздражения, которые взаимно контролируют и дополняют друг друга. В первое время близкие предметы видны в двух измерениях (высота и ширина), но благодаря осязанию ощутимы в трех измерениях (высота, ширина и глубина). Так вкладываются первые представления о телесности (объемности) предметов.

На 4-м месяце у детей развивается хватательный рефлекс. При этом направление предметов большинство детей определяют правильно, но расстояние оценивается неверно. Ребенок ошибается также в определений объемности предметов, которое также основывается на оценке расстояния: он пытается схватить бестелесные солнечные пятна на одеяле и движущиеся тени.

Со второго полугодия жизни начинается освоение дальнего пространства. Осязание при этом заменяют ползание и ходьба. Они позволяют сопоставлять расстояние, на которое перемещается тело, с изменениями величины изображений на сетчатке и тонуса глазодвигательных мышц: издаются зрительные представления о расстоянии. Следовательно, эта функция развивается позднее других. Она обеспечивает трехмерное восприятие пространства и совместима лишь с полной согласованностью движений глазных яблок и симметрией в их положении.

Следует иметь в виду, что механизм ориентации в пространстве выходит за рамки зрительной системы и является продуктом сложной синтетической деятельности мозга. В связи с этим дальнейшее совершенствование этого механизма тесно связано с познавательной деятельностью ребенка. Всякое существенное изменение в окружающей обстановке, воспринимаемое зрительной системой, служит основой для построения сенсомоторных действий, для приобретения знаний о зависимости между действием и его результатом. В способности запоминать последствия своих действий, собственно, и заключается процесс обучения в психологическом смысле этого слова.

Значительные качественные изменения в пространственном восприятии происходят в возрасте 2-7 лет, когда ребенок овладевает речью и у него развивается абстрактное мышление. Зрительная оценка пространства совершенствуется и в более старшем возрасте.

В заключение следует отметить, что в развитии зрительных ощущений принимают участие как врожденные механизмы, выработанные и закрепившиеся в филогенезе, так и механизмы, приобретенные в процессе накопления жизненного опыта. В связи с этим давний спор между сторонниками нативизма и эмпиризма о главенствующей роли одного из этих механизмов в формировании пространственного восприятия представляется беспредметным.

Особенности оптической системы и рефракции

Глаз новорожденного имеет значителыно более короткую, чем глаз взрослого, переднезаднюю ось (примерно 17-18 мм) и более высокую (80,0-90,9 дптр) преломляющую силу. Особенно значительны различия в преломляющей силе хрусталика: 43,0 дптр у детей и 20,0 дптр у взрослых. Преломляющая сила роговицы глаза новорожденного равна в среднем 48,0 дптр, взрослого - 42,5 дптр.

Глаз новорожденного, как правило, имеет гиперметропичеокую рефракцию. Степень ее составляет в среднем 2,0-4,0 дптр. В первые 3 года жизни ребенка происходит интенсивный рост глаза, a также уплощение роговицы и особенно хрусталика. К З-м годам длина переднезадней оси глаза достигает 23 мм, т. е. составляет примерно 95% от размера глаза взрослого. Pост глазного яблока продолжается до 14-15 лет. К этому возрасту длина оси глаза достигает в среднем 24 мм, преломляющая сила роговицы 43,0 дптр, хрусталика - 20,0 дптр.

По мере роста глаза вариабельность его клинической рефракции уменьшается. Рефракция глаза медленно усиливается, т. е. смещается в сторону эмметропической.

Есть веские основания считать, что рост глаза и его частей в этот период - саморегулируемый процесс, подчиняющийся определенной цели - формированию слабой гиперметропической или эмметропической рефракции. Об этом свидетельствует наличие высокой обратной корреляции (от -0,56 до -0,80) между длиной переднезадней оси глаза и его преломляющей силой.

Статическая рефракция продолжает медленно изменяться в течение жизни. В общей тенденции к изменению средней величины рефракции (начиная с рождения и кончая возрастом 70 лет) можно выделить две фазы гиперметропизации глаза ослабление (рефракции) - в раннем детском возрасте и в период от 30 до 60 лет и две стадии миопизации глаза (усиление рефракции) в возрасте от 10 до 30 лет и после 60 лет. Следует иметь в виду, что мнение об ослаблении рефракции в раннем детском возрасте и усилении ее после 60 лет разделяют не все исследователи.

С увеличением возраста изменяется также динамическая рефракция глаза. Особого внимания заслуживают три возрастных периода.

  • Первый - от рождения до 5 лет - характеризуется прежде всего неустойчивостью показателей динамической рефракции глаза. В этот период ответ аккомодации на запросы зрения и склонность ресничной мышцы к спазму не вполне адекватны. Рефракция в зоне дальнейшего зрения лабильна и легко сдвигается к сторону близорукости. Врожденные патологические состояния (врожденная близорукость, нистагм и др.), при которых снижается деятельность динамической рефракции глаза, могут задерживать ее нормальное развитие. Тонус аккомодации обычно достигает 5,0- 6,0 дптр и более в основном за счет гиперметропической рефракции, характерной для данного возрастного периода. При нарушении бинокулярного зрения и бинокулярного взаимодействия систем динамической рефракции может развиться патология глаза различных видов, прежде всего косоглазие. Ресничная мышца недостаточно работоспособна и еще не готова к активной зрительной работе на близком расстоянии.
  • Два других периода это, по-видимому, критические возрастные периоды повышенной уязвимости динамической рефракции: возраст 8-14 лет, в котором происходит особенно активное формирование системы динамической рефракции глаза, и возраст 40-50 лет и более, когда эта система подвергается инволюции. В возрастной период 8-14 лет статическая рефракция приближается к эмметропии, в результате чего создаются оптимальные условия для деятельности динамической рефракции глаза. Вместе с тем это период, окопда общие нарушения организма и адинамия могут оказывать неблагоприятное действие на ресничную мышцу, способствуя ее ослаблению, и значительно возрастает зрительная нагрузка. Следствием этого является склонность к спастическому состоянию ресничной мышцы и возникновению миопии. Усиленный рост организма в этот препубертатный период способствует прогрессированию близорукости.

Из особенностей динамической рефракции глаза у лиц 40- 50 лет и старше следует выделить изменения, представляющие собой закономерные проявления возрастной инволюции глаза, и изменения, связанные с патологией органа.зрения и общими болезнями пожилого и старческого возраста. К типичным проявленияму физиологического старения глаза можно отнести пресбиопсию, бусловлениую главным образом снижением эластичности хрусталика, уменьшение объема аккомодации, медленное ослабление рефракции снижение степени близорукости, переход эдиометропической рефракции в дальнозоркость, повышение степени дальнозоркости, увеличение относительной частоты астигматизма обратного типа, более быструю утомляемость глаз вследствие снижения адаптационной способности. Из состояний, связанных с возрастной патологией глаза, на первый план выступают изменения рефракции при начинающемся помутнении хрусталика. Из общих болезней, оказывающих наибольшее влияние на динамическую рефраищию, следует выделить сахарный диабет, при котором оптические установки глаза характеризуются большой лабильностью.

Орган зрения в филогенезе проделал путь от отдельных эктодермального происхождения светочувствительных клеток (у кишечнополостных) до сложно устроенных парных глаз у млекопитающих. У позвоночных животных глаза развиваются сложно: из боковых выростов мозга образуется светочувствительная оболочка - сетчатка. Сред­няя и наружная оболочки глазного яблока, стекловидное тело формируются из мезо­дермы (среднего зародышевого листка), хрусталик - из эктодермы.

Из тонкой наружной стенки бокала развивается пигментная часть (слой) сетчатки. Зри­тельные (фоторецепторные, светочувствительные) клетки находятся в более толстом внутреннем слое бокала. У рыб дифференцировка зрительных клеток на палочковидные (палочки) и колбочковидные (колбочки) выражена слабо, у рептилий имеются одни колбочки, у млекопитающих в сетчатке находятся преимущественно палочки; у водных и ночных животных колбочки в сетчатке отсутствуют. В составе средней (сосудистой) оболочки уже у рыб начинает формироваться ресничное тело, усложняющееся в своем развитии у птиц и млекопитающих.

Мышца в радужке и в ресничном теле впервые появляются у амфибий. Наружная оболочка глазного яблока у низших позвоночных состоит преимущественно из хряще­вой ткани (у рыб, амфибий, большинства ящерообразных). У млекопитающих она построена только из волокнистой (фиброзной) ткани.

Хрусталик у рыб, амфибий округлый. Аккомодация достигается вследствие перемещения хрусталика и сокращения особой передвигающей хрусталик мышцы. У рептилий и птиц хрусталик способен не только перемешаться, но и изменять свою кривизну. У млекопитающих хрусталик за­нимает постоянное место, аккомодация осуществляется вследствие изменения кривиз­ны хрусталика. Стекловидное тело, имеющее вначале волокнистую структуру, посте­пенно становится прозрачным.

Одновременно с усложнением строения глазного яблока развиваются вспомога­тельные органы глаза. Первыми появляются шесть глазодвигательных мьшц, преобра­зующихся из миотомов трех пар головных сомитов. Веки начинают формироваться у рыб в виде одной кольцевидной кожной складки. У наземных позвоночных животных образуются верхние и нижние веки, а у большинства из них у медиального угла гла­за имеется также мигательная перепонка (третье веко). У обезьян и человека остатки этой перепонки сохраняются в виде полулунной складки конъюнктивы. У наземных позвоночных животных развивается слезная железа, формируется слезный аппарат.

Глазное яблоко у человека также развивается из нескольких источников. Светочувствительная оболочка (сетчатка) происходит из боковой стенки мозгового пузыря (будущий промежуточный мозг); главная линза глаза - хрусталик – непосредственно из эктодермы; сосудистая и фиброзная оболочки – из мезенхимы. На ранней стадии развития зародыша (конец 1-го, начало 2-го месяца внутриутробной жизни) на боковых стенках первичного мозгового пузыря (prosencephalon ) появляется небольшое парное выпячивание – глазные пузыри. Концевые отделы их расширяются, растут в сторону эктодермы, а соединяющие с мозгом ножки суживаются и в дальнейшем превращаются в зрительные нервы. В процессе развития стенка глазного пузыря впячивается внутрь его и пузырь превращается в двухслойный глазной бокал. Наружная стенка бокала в дальнейшем истончается и трансформируется в наружную пигментную часть (слой), а из внутренней стенки образуется сложно устроенная световоспринимающая (нервная) часть сетчатки (фотосенсорный слой). На стадии формирования глазного бокала и дифференцировки его стенок, на 2-м месяце внутриутробного развития, прилежащая к глазному бокалу спереди эктодерма вначале утолщается, а затем образуется хрусталиковая ямка, превращающаяся в хрусталиковый пузырек. Отделившись от эктодермы, пузырек погружается внутрь глазного бокала, теряет полость и из него в дальнейшем формируется хрусталик.

На 2-м месяце внутриутробной жизни в глазной бокал через образовавшуюся на нижней его стороне щель проникают мезенхимные клетки. Эти клетки образуют внутри бокала кровеносную сосудистую сеть в формирующемся здесь стекловидном теле и вокруг растущего хрусталика. Из прилежащих к глазному бокалу мезенхимных клеток образуется сосудистая оболочка, а из наружных слоев - фиброзная оболочка. Передняя часть фиброзной оболочки становится прозрачной и превращается в роговицу. У плода 6-8 мес кровеносные сосуды, находящиеся в капсуле хрусталика и в стекловидном теле, исчезают; рассасывается мембрана, закрывающая отверстие зрачка (зрачковая мембрана).

Верхние и нижние веки начинают формироваться на 3-м месяце внутриутробной жизни, вначале в виде складок эктодермы. Эпителий конъюнктивы, в том числе и покрывающий спереди роговицу, происходит из эктодермы. Слезная железа развива­ется из выростов конъюнктивального эпителия, появляющихся на 3-м месяце внутриутробной жизни в латеральной части формирующегося верхнего века.

Глазное яблоко у новорожденного относительно большое, его переднезадний размер 17,5 мм, масса - 2,3 г. Зрительная ось глазного яблока проходит латеранее, чем у взрослого человека. Растет глазное яблоко на первом году жизни ребен­ка быстрее, чем в последующие годы. К 5 годам масса глазного яблока увеличивается на 70%, а к 20-25 годам - в 3 раза по сравнению с новорожденным.

Роговица у новорожденного относительно толстая, кривизна ее в течение жизни почти не меняется; хрусталик почти круглый, радиусы его передней и задней кри­визны примерно равны. Особенно быстро растет хрусталик в течение 1-го года жиз­ни, в дальнейшем темпы роста его снижаются. Радужка выпуклая кпереди, пигмента в ней мало, диаметр зрачка равен 2,5 мм. По мере увеличения возраста ребенка тол­щина радужки увеличивается, количество пигмента в ней возрастает, диаметр зрачка становится большим. В возрасте 40-50 лет зрачок немного суживается.

Ресничное тело у новорожденного развито слабо. Рост и дифференцировка ресничной мышцы осуществляются довольно быстро. Зрительный нерв у новорожденного тонкий (0,8 мм), короткий. К 20 годам жизни диаметр его возрастает почти вдвое.

Мышцы глазного яблока у новорожденного развиты достаточно хорошо, кроме их сухожильной части. Поэтому движение глаза возможно сразу после рождения, однако координация этих движений наступает со 2-го месяца жизни ребенка.

Слезная железа у новорожденного имеет небольшие размеры, выводные канальцы железы тонкие. Функция слезоотделения появляется на 2-м месяце жизни ребенка. Влагалище глазного яблока у новорожденного и детей грудного возраста тонкое, жи­ровое тело глазницы развито слабо. У людей пожилого и старческого возраста жиро­вое тело глазницы уменьшается в размерах, частично атрофируется, глазное яблоко меньше выступает из глазницы.

Глазная щель у новорожденного узкая, медиальный угол глаза закруглен. В дальнейшем глазная щель быстро увеличивается. У детей до 14-15 лет она широкая, поэтому глаз кажется большим, чем у взрослого человека.

При заболеваниях органов зрения больные жалуются на множество факторов. Диагностика включает в себя следующие этапы, которые учитывает все возрастные особенности органа зрения :

  1. Жалобы.
  2. Анамнез
  3. Наружный осмотр.

Наружный осмотр производится при хорошем освещении. Вначале осматривается здоровый глаз, а затем – больной. Следует обращать внимание на такие факторы:

  1. Цвет кожи вокруг глаз.
  2. Величина глазной щели.
  3. Состояние оболочек глаза – отворот верхнего или нижнего века.

Конъюктива в нормальном состоянии – бледно-розовая, гладкая, прозрачная, влажная, хорошо виден сосудистый рисунок.

При наличие патологического процесса в глазу наблюдается инъекция:

  1. Поверхностная (конъюнктивальная) – конъюктива ярко-красная, а роговица бледнеет.
  2. Глубокая (перикорниальная) – вокруг роговицы цвет до фиолетового, бледнеет к периферии.
  3. Исследование функции слезной железы (слезотечение не проверяется при жалобах).

Функциональная проба. Берется полоска промокательной бумаги шириной 0,5 сантиметра и длиной 3 сантиметра. Один конец загибают и вставляют в конъюктивальный свод, второй – свисает по щеке. В нормальном состоянии – за 5 минут смачивается 1,5 см полоски. Меньше 1,5 см – гипофункция, больше 1,5 см – гиперфункция.

Носо-слезные пробы:

  1. Слезно-носовая.
  2. Промывание носослезного канала.
  3. Рентгенография.

Осмотр больного яблока

При осмотре глазного яблока оценивают величину глаза. Она зависит от рефракции. При близорукости глаз увеличивается, при дальнозоркости – уменьшается.

Выпячивание глазного яблока к наружи называется экзофтальмом, западение – эндофтальмом.

Экзофтальм – это гематома, орбитальная эмфизема, опухоль.

Для определения степени выстояния глазного яблока используется экзофтальмометрия.

Метод бокового освещения

Источник света располагается слева и спереди от больного. Врач садится напротив. Во время процедуры используют лупу в 20 диоптрий.

Оценивают: склеру (цвет, рисунок, ход трабекул) и область зрачка.

Метод исследования проходящим светом:

Этим методом оцениваются прозрачные среды глаза – роговица, влага передней камеры, хрусталик и стекловидное тело.

Исследование проводят в темной комнате. Источник света располагается сзади слева. Врач – напротив. С помощью зеркального офтальмоскопа зеркалом подается источник света в глаз. В нормальном состоянии зрасок должен загореться красным цветом.

Офтальмоскопия:

  1. В обратном виде. Операцию осуществляют с помощью офтальмоскопа, линзы в 13 диоптрий и источника света. Офтальмоскоп держа в право руке, смотрят правым глазом, лупа в левой руке и приставляется к надбровной дуге пациента. В итоге получается зеркальное перевернутое изображение. Исследуется сетчатка и зрительный нерв.
  2. В прямом виде. Используется ручной электроофтальмоскоп. Правило процедуры – правый глаз осматривается правым глазом, левый – левым.

Офтальмоскоп в обратном виде дает общее представление о состоянии глазного дна пациента. В прямом – помогает детализировать изменения.

Методика проводится в определенной последовательности. Алгоритм: диск зрительного нерва – пятно – перефирия сетчатки.

В норме диск зрительного нерва – розовый с четкими контурами. В центре – углубление, откуда выходят сосуды.

Биомикроскопия:

При биомикроскопии используют щелевую лампу. Это комбинация интенсивного источника света и бинокулярного микроскопа. Голову устанавливают с упором лба и подбородка. Подает регулируемый источник свет в глаз пациенту,

Гониоскопия:

Это метод осмотра угла передней камеры. Осуществляется при помощи гониоскопа и щелевой лампы. Таким образом используется гонеоскоп Гольдмана.

Гонеоскоп – линза, которая представляет собой систему зеркал. Таким методом исследуется корень радужки, степень открытия угла передней камеры.

Тонометрия:

Пальпаторная. Больного проят закрыть глаз и указательным пальцем, пальнируя, судят о величине глазного давления. Судят по податливости глазного яблока. Виды:

Tn – давление в норме.

Т+ — умеренно плотный.

Т 2+ -очень плотный.

Т 3+ — плотный как камень.

Т -1 – мягче нормы

Т -2 – мягкий

Т -3 – очень мягкий.

Инструментальная. Во время процедуры используют тонометр Маклакова – металлический цилиндр высотой 4 см, вес – 100 г, на концах – расширенные площадки из белого стекла.

Грузики обрабатываются спиртом, затем насухо вытираются стерильным тампоном. В глаз закапывается специальная краска – колларгол.

Грузик держится на держалке и ставится на роговицу. Далее грузик снимается и делаются отпечатки на бумаге, смоченной спиртом. Результат оценивается с помощью линейки Полака.

Нормальное давление – 18-26 мм рт ст.

Развитие и возрастные особенности органа зрения

Орган зрения в филогенезе проделал путь от отдельных эктодермального происхождения светочувствительных клеток (у кишечнополостных) до сложно устроенных парных глаз у млекопитающих. У позвоночных животных глаза развиваются сложно: из боковых выростов мозга образуется светочувствительная оболочка - сетчатка. Сред­няя и наружная оболочки глазного яблока, стекловидное тело формируются из мезо­дермы (среднего зародышевого листка), хрусталик - из эктодермы.

Из тонкой наружной стенки бокала развивается пигментная часть (слой) сетчатки. Зри­тельные (фоторецепторные, светочувствительные) клетки находятся в более толстом внутреннем слое бокала. У рыб дифференцировка зрительных клеток на палочковидные (палочки) и колбочковидные (колбочки) выражена слабо, у рептилий имеются одни колбочки, у млекопитающих в сетчатке находятся преимущественно палочки; у водных и ночных животных колбочки в сетчатке отсутствуют. В составе средней (сосудистой) оболочки уже у рыб начинает формироваться ресничное тело, усложняющееся в своем развитии у птиц и млекопитающих.

Мышца в радужке и в ресничном телœе впервые появляются у амфибий. Наружная оболочка глазного яблока у низших позвоночных состоит преимущественно из хряще­вой ткани (у рыб, амфибий, большинства ящерообразных). У млекопитающих она построена только из волокнистой (фиброзной) ткани.

Хрусталик у рыб, амфибий округлый. Аккомодация достигается вследствие перемещения хрусталика и сокращения особой передвигающей хрусталик мышцы. У рептилий и птиц хрусталик способен не только перемешаться, но и изменять свою кривизну. У млекопитающих хрусталик за­нимает постоянное место, аккомодация осуществляется вследствие изменения кривиз­ны хрусталика. Стекловидное тело, имеющее вначале волокнистую структуру, посте­пенно становится прозрачным.

Одновременно с усложнением строения глазного яблока развиваются вспомога­тельные органы глаза. Первыми появляются шесть глазодвигательных мьшц, преобра­зующихся из миотомов трех пар головных сомитов. Веки начинают формироваться у рыб в виде одной кольцевидной кожной складки. У наземных позвоночных животных образуются верхние и нижние веки, а у большинства из них у медиального угла гла­за имеется также мигательная перепонка (третье веко). У обезьян и человека остатки этой перепонки сохраняются в виде полулунной складки конъюнктивы. У наземных позвоночных животных развивается слезная желœеза, формируется слезный аппарат.

Глазное яблоко у человека также развивается из нескольких источников. Светочувствительная оболочка (сетчатка) происходит из боковой стенки мозгового пузыря (будущий промежуточный мозг); главная линза глаза - хрусталик – непосредственно из эктодермы; сосудистая и фиброзная оболочки – из мезенхимы. На ранней стадии развития зародыша (конец 1-го, начало 2-го месяца внутриутробной жизни) на боковых стенках первичного мозгового пузыря (prosencephalon ) появляется небольшое парное выпячивание – глазные пузыри. Концевые отделы их расширяются, растут в сторону эктодермы, а соединяющие с мозгом ножки суживаются и в дальнейшем превращаются в зрительные нервы. В процессе развития стенка глазного пузыря впячивается внутрь его и пузырь превращается в двухслойный глазной бокал. Наружная стенка бокала в дальнейшем истончается и трансформируется в наружную пигментную часть (слой), а из внутренней стенки образуется сложно устроенная световоспринимающая (нервная) часть сетчатки (фотосœенсорный слой). На стадии формирования глазного бокала и дифференцировки его стенок, на 2-м месяце внутриутробного развития, прилежащая к глазному бокалу спереди эктодерма вначале утолщается, а затем образуется хрусталиковая ямка, превращающаяся в хрусталиковый пузырек. Отделившись от эктодермы, пузырек погружается внутрь глазного бокала, теряет полость и из него в дальнейшем формируется хрусталик.

На 2-м месяце внутриутробной жизни в глазной бокал через образовавшуюся на нижней его стороне щель проникают мезенхимные клетки. Эти клетки образуют внутри бокала кровеносную сосудистую сеть в формирующемся здесь стекловидном телœе и вокруг растущего хрусталика. Из прилежащих к глазному бокалу мезенхимных клеток образуется сосудистая оболочка, а из наружных слоев - фиброзная оболочка. Передняя часть фиброзной оболочки становится прозрачной и превращается в роговицу. У плода 6-8 мес кровеносные сосуды, находящиеся в капсуле хрусталика и в стекловидном телœе, исчезают; рассасывается мембрана, закрывающая отверстие зрачка (зрачковая мембрана).

Верхние и нижние веки начинают формироваться на 3-м месяце внутриутробной жизни, вначале в виде складок эктодермы. Эпителий конъюнктивы, в том числе и покрывающий спереди роговицу, происходит из эктодермы. Слезная желœеза развива­ется из выростов конъюнктивального эпителия, появляющихся на 3-м месяце внутриутробной жизни в латеральной части формирующегося верхнего века.

Глазное яблоко у новорожденного относительно большое, его переднезадний размер 17,5 мм, масса - 2,3 ᴦ. Зрительная ось глазного яблока проходит латеранее, чем у взрослого человека. Растет глазное яблоко на первом году жизни ребен­ка быстрее, чем в последующие годы. К 5 годам масса глазного яблока увеличивается на 70%, а к 20-25 годам - в 3 раза по сравнению с новорожденным.

Роговица у новорожденного относительно толстая, кривизна ее в течение жизни почти не меняется; хрусталик почти круглый, радиусы его передней и задней кри­визны примерно равны. Особенно быстро растет хрусталик в течение 1-го года жиз­ни, в дальнейшем темпы роста его снижаются. Радужка выпуклая кпереди, пигмента в ней мало, диаметр зрачка равен 2,5 мм. По мере увеличения возраста ребенка тол­щина радужки увеличивается, количество пигмента в ней возрастает, диаметр зрачка становится большим. В возрасте 40-50 лет зрачок немного суживается.

Ресничное тело у новорожденного развито слабо. Рост и дифференцировка ресничной мышцы реализуются довольно быстро. Зрительный нерв у новорожденного тонкий (0,8 мм), короткий. К 20 годам жизни диаметр его возрастает почти вдвое.

Мышцы глазного яблока у новорожденного развиты достаточно хорошо, кроме их сухожильной части. По этой причине движение глаза возможно сразу после рождения, однако координация этих движений наступает со 2-го месяца жизни ребенка.

Слезная желœеза у новорожденного имеет небольшие размеры, выводные канальцы желœезы тонкие. Функция слезоотделœения появляется на 2-м месяце жизни ребенка. Влагалище глазного яблока у новорожденного и детей грудного возраста тонкое, жи­ровое тело глазницы развито слабо. У людей пожилого и старческого возраста жиро­вое тело глазницы уменьшается в размерах, частично атрофируется, глазное яблоко меньше выступает из глазницы.

Глазная щель у новорожденного узкая, медиальный угол глаза закруглен. В дальнейшем глазная щель быстро увеличивается. У детей до 14-15 лет она широкая, в связи с этим глаз кажется большим, чем у взрослого человека.

23-02-2012, 17:06

Описание

Основные задачи занятия . Изучить морфологические особенности зрительного анализатора у детей раннего возраста, условия для формирования и развития зрительных функций; рассмотреть физиологию зрительного акта; получить представление о центральном зрении и его возрастной динамике, основах и динамике цветового зрения; изучить субъективные и объективные методы исследования остроты зрения, цветоощущения у детей различного возраста; изучить возрастные особенности и методы исследования периферического, бинокулярного и стереоскопического зрения.

Порядок занятия . Зрительные функции исследуют друг у друга и у детей различного возраста с понижением функций вследствие аномалий рефракции, гидрофтальма, катаракты, отслойки сетчатки и т. д. Овладевают методикой работы с приборами, методами и особенностями исследования отдельных функций у детей различного возраста. Последовательно проверяются прямая и содружественная реакция зрачков на свет, реакция слежения и фиксации взгляда. Далее определяют ориентировочно остроту и поле зрения, цветоощущение и бинокулярное зрение. Вслед за ориентировочным исследованием зрительных функций определяют их на аппаратах.

Уже у ребенка 3 лет, если наладить с ним контакт, можно довольно точно определить остроту зрения.

Острота зрения - это способность различать отдельно две точки или детали предмета. Для определения остроты зрения служат детские таблицы (рис. 12),

Рис. 12. Таблицы Орловой для исследования остроты зрения у детей.

таблицы с оптотипами Ландольта, помещенные в аппарат Рота. Предварительно ребенку показывают таблицу с картинками на близком расстоянии. Затем проверяют остроту зрения при обоих открытых глазах с расстояния 5 м, а потом, закрывая поочередно то один, то другой глаз заслонкой (рис. 13),

Рис. 13. Полупрозрачный щиток-заслонка для выключения неисследуемого глаза.

исследуют зрение каждого глаза. Показ картинок или знаков начинают с верхних строчек. Детям школьного возраста показ букв в таблице Сивцева и Головина (рис. 14)

Рис. 14. Определение остроты зрения по таблице Головина - Сивцева.

следует начинать с самых нижних строк. Если ребенок видит почти все буквы 10-й строки, за исключением одной-двух, то острота зрения его равна 1,0. Эта строка должна располагаться на уровне глаз сидящего ребенка.

При оценке остроты зрения необходимо помнить о возрастной динамике центрального зрения, поэтому, если ребенок 3-4 лет видит знаки только 5-7-й строки, это не говорит еще о наличии органических изменений в органе зрения. Для исключения их необходимо тщательно осмотреть передний отрезок глаза и определить хотя бы вид рефлекса с глазного дна при узком зрачке.

Если нет помутнений в преломляющих средах глаза и нет даже косвенных признаков, свидетельствующих о патологии глазного дна, то наиболее часто снижение зрения может быть обусловлено аномалиями рефракции. Чтобы подтвердить или исключить и эту причину, необходимо попытаться улучшить зрение с помощью подставления соответствующих стекол перед глазом (рис. 15).

Рис. 15. Определение остроты зрения с коррекцией оптическими стеклами.

При проверке острота зрения может оказаться ниже 0,1; в таких случаях следует ребенка подводить к таблице (или таблицу подносить к нему), пока он не станет различать буквы или картинки первой строки. Остроту зрения
следует при этом рассчитывать по формуле Снеллена : V = d/D где V - острота зрения; d - расстояние, с которого обследуемый видит буквы данной строки. D - расстояние, с которого штрихи букв различаются под углом 1 (т. е. при остроте зрения, равной 1,0).

Если острота зрения выражается сотыми долями единицы, то расчеты по формуле становятся нецелесообразными. В таких случаях необходимо прибегнуть к показу больному пальцев (на темном фоне), ширина которых приблизительно соответствует штрихам букв первой строчки, и отмечать,с какого расстояния он их считает (рис. 16).

Рис. 16. Определение остроты зрения ниже 0,1 по пальцам.

При некоторых поражениях органа зрения у ребенка возможна потеря предметного зрения, тогда он не видит даже пальцев, поднесенных к лицу. В этих случаях очень важно определить, сохранилось ли у него хотя бы ощущение света или имеется абсолютная слепота. Проверить это можно, следя за прямой реакцией зрачка на свет. Ребенок более старшего возраста сам может отметить наличие или отсутствие у него светоощущения, если глаз его освещать офтальмоскопом.

Однако установить наличие светоощущения у обследуемого еще недостаточно. Следует узнать, функционируют ли в достаточной мере все отделы сетчатки. Это выясняют, исследуя правильность светопроекции. Наиболее удобно ее проверить у ребенка, поставив позади него лампу и отбрасывая на роговицу глаза из разных точек пространства световой пучок с помощью офтальмоскопа. Это исследование возможно и у детей младшего возраста, которым предлагается пальцем показать на перемещающийся источник света. Правильная светопроекция свидетельствует о нормальной функции периферической части сетчатки.

Данные о светопроекции приобретают особенно большое значение при помутнении оптических сред глаз а, когда невозможна офтальмоскопия, например у ребенка с врожденной катарактой при решении вопроса о целесообразности оптической операции. Правильная светопроекция указывает на сохранность зрительно-нервного аппарата глаза.

Наличие неправильной (неуверенной) светопроекции чаще всего свидетельствует о грубых изменениях в сетчатке, проводящих путях или центральном отделе зрительного анализатора.

Значительные трудности встречаются при исследовании зрения у детей первых лет жизни. Естественно, что количественные характеристики у них почти не могут быть уточнены. На первой неделе жизни о наличии зрения у ребенка можно судить по зрачковой реакции на свет. Учитывая узость зрачка в этом возрасте и недостаточную подвижность радужки, исследования следует проводить в затемненной комнате и лучше пользоваться для освещения зрачка ярким источником света (зеркальный офтальмоскоп). Освещение глаз ярким светом нередко заставляет ребенка смыкать веки (рефлекс Пейпера), откидывать головку.

На 2-3-й неделе жизни ребенка можно судить о состоянии его зрения по обнаружению кратковременной фиксации взглядом источника света или яркого предмета. Освещая глаза ребенка светом перемещающегося офтальмоскопа или показывая яркие игрушки, можно видеть, что ребенок кратковременно следит за ними. У детей в возрасте 4-5 недель с хорошим зрением определяется устойчивая центральная фиксация взора: ребенок способен долго удерживать взгляд на источнике света или ярких предметах.

В связи с тем, что количественно определить остроту зрения у детей даже на 3-4-м месяце жизни доступными для врача способами не представляется возможным, следует прибегнуть к описательной характеристике . Например, ребенок 3-4 месяцев следит за показываемыми на различном расстоянии яркими игрушками, в 4-6 месяцев он начинает издалека узнавать мать, о чем свидетельствуют его поведение, мимика; измеряя эти расстояния и соотнося их с величиной букв первой строки таблицы, можно приблизительно характеризовать остроту зрения.

В первые годы жизни судить об остроте зрения ребенка следует также по тому, с какого расстояния он узнает окружающих людей, игрушки, по ориентировке в незнакомом помещении. Острота зрения у детей возрастает постепенно, и темпы этого роста различны. Так, к 3 годам острота зрения не менее чем у 10% детей равняется 1,0, у 30%-0,5-0,8, у остальных - ниже 0,5. К 7 годам у большинства детей острота зрения бывает равна 0,8-1,0. В тех случаях, когда острота зрения равна 1,0, следует помнить, что это не предел, и продолжать исследование, так как она может быть (примерно у 15% детей) и значительно выше (1,5 и 2,0 и даже более).

Периферическое зрение характеризуется полем зрения (совокупностью всех точек пространства, которые одновременно воспринимаются неподвижным глазом).

Исследование поля зрения необходимо при диагностике ряда глазных и общих заболеваний, особенно неврологических, связанных с поражением зрительных путей. Исследование периферического зрения преследует две цели: определение границ поля зрения и выявление в нем ограниченных участков выпадений (скотом).

О поле зрения у детей в возрасте до 2-3 лет следует прежде всего судить по их ориентации в окружающей обстановке.

У детей младшего возраста, а в некоторых случаях и у детей старшего возраста, ориентировочно периферическое зрение следует предварительно определить наиболее простым способом (контрольным). Обследуемого усаживают против врача так, чтобы глаза их находились на одном уровне. Определяют отдельно поле зрения каждого глаза . Для этого обследуемый закрывает, например, левый, а исследователь - правый глаз, затем наоборот. Объектом служит какой-либо предмет (кусок ваты, карандаш), перемещаемый с периферии по средней линии между врачом и больным (рис. 17).

Рис. 17. Контрольный способ исследования поля зрения.

Обследуемый отмечает момент появления в поле зрения движущегося предмета. О поле зрения исследователь судит, ориентируясь на состояние собственного поля зрения (заведомо известного).

Определение границ полей зрения в градусах осуществляется на периметрах . Наиболее распространены из них настольный периметр (рис.18)

Рис. 18. Настольный периметр.

и проекционно-регистрационные.

Исследование поля зрения производят с помощью специальных меток-объектов (черная палочка с белым объектом на конце) на настольном периметре - в освещенном помещении, на проекционном - в затемненном. Чаще пользуются белым объектом диаметром 5 мм. Границы поля зрения обычно исследуют в 8 меридианах. Дуга периметра легко вращается. Голову обследуемого помещают на подставке периметра. Один глаз фиксирует метку в центральной части дуги. Объект медленно (2 см/сек) перемещают от периферии к центру.Обследуемый отмечает появление в поле зрения движущегося объекта и моменты исчезновения его из поля зрения.

Проекционно-регистрационные периметры обладают рядом преимуществ. Благодаря имеющемуся приспособлению можно менять величину и интенсивность освещения объектов, а также их цвет, одновременно отмечая полученные данные на схеме. Важно также и то, что повторные исследования можно проводить при тех же условиях освещенности. Наиболее совершенным является проекционный сферопериметр (рис. 19).

Рис. 19. Исследование поля зрения на сферопериметре.

Для получения более точных данных о состоянии периферического зрения проводят исследования с помощью объектов меньшей величины (3-1 мм) и различной освещенности (на проекционных периметрах). С помощью этих исследований можно выявить даже незначительные изменения со стороны зрительного анализатора.

Если при исследовании периферического зрения обнаруживают концентрическое сужение , это может говорить о наличии у ребенка воспалительного заболевания зрительного нерва, атрофии его, глаукомы. Концентрическое сужение поля зрения наблюдается и при пигментном перерождении сетчатки. Значительное сужение поля зрения в каком-либо секторе часто отмечают при отслойке сетчатки, обширных участках сотрясения ее в результате травмы.

Выпадение центрального участка поля зрения , сочетающееся, как правило, с понижением центрального зрения, возможно при ретробульбарных невритах, дистрофических изменениях в макулярной области, воспалительных очагах в ней и т. д. Двусторонние изменения полей зрения чаще всего наблюдаются при поражении зрительных путей в полости черепа. Так, битемпоральные и биназальные гемианопсии возникают при поражениях хиазмы, право- и левосторонние гомонимные гемианопсии - при поражении зрительных путей выше хиазмы.

В некоторых случаях при недостаточной четкости выявленных изменений следует прибегнуть к более тонкому исследованию с помощью цветных объектов (красный, зеленый синий). Все полученные данные записывают в существующие схемы полей зрения (рис. 20).

Рис. 20. Бланк-схема поля зрения и границы поля зрения на белый цвет у детей разного возраста и у взрослых.Сплошная линия - взрослый; пунктир с точками - дети 9-11 лет; пунктир - дети 5-7 лет; точки - дети до 3 лет.

Ширина границ поля зрения у детей находится в прямой зависимости от возраста. Так у детей 3 лет границы на белый цвет уже, чем у взрослых, по всем радиусам в среднем на 15° (носовая - 45°, височная - 75°, верхняя - 40°, нижняя - 55°. Затем наблюдается постепенное расширение границ, и у 12-14-летних детей они почти не отличаются от границ у взрослых (носовая - 60°, височная - 90°, верхняя - 55°, нижняя - 70°).

При исследовании на периметре могут довольно четко выявляться крупные скотомы . Однако форму и величину скотом, располагающихся в пределах 30-40° от центральной ямки, лучше определять на кампиметре . Этот способ используют и для определения величины и формы слепого пятна. При этом диск зрительного нерва проецируется на черной матовой доске, расположенной на расстоянии 1 м от обследуемого, голова которого помещается на подставке. Против исследуемого глаза на доске имеется белая фиксационная точка, которую он должен фиксировать. По доске в месте, соответствующем проекции диска зрительного нерва, передвигают белый объект диаметром 3-5 мм. Границы слепого пятна выявляют по моменту появления или исчезновения объекта из поля зрения. Размер слепого пятна на появление объекта в норме у детей старших возрастных групп составляет 12 X 14 см. При воспалительных, застойных явлениях в зрительном нерве, глаукоме слепое пятно может увеличиваться в размере. Особенно ценны динамические исследования скотом, позволяющие судить об изменениях в течении процесса.

В ряде случаев для суждения о состоянии зрительного анализатора необходимо определить функцию светоощущения (способность воспринимать минимальное световое раздражение).

Наиболее часто проверяют светоощущение при глаукоме, пигментном перерождении сетчатки, хориоидитах и других заболеваниях. Исследование заключается в определении у больного ребенка порога светового раздражения отдельно для каждого глаза, т. е. минимального светового раздражения, улавливаемого глазом, и наблюдении за изменением этого порога во время пребывания больного в темноте. Порог изменяется в зависимости от степени освещения. Во время пребывания в темноте порог светового раздражения понижается. Этот процесс называется темновой адаптацией.

Адаптометрия обычно производится на адаптометре Белостоцкого-Гофмана (рис. 21).

Рис. 21. Исследование световой чувствительности на адаптометре.

Исследование проводят в темноте после 10-минутного засвета глаз ярким источником света. Порог светового раздражения, как правило, определяют через каждые 5 минут на протяжении 45 минут. При наличии изменений палочкового аппарата сетчатки уровень кривой темновой адаптации может оказаться ниже, чем у здорового ребенка того же возраста, порог раздражения может оставаться долгое время высоким. Для контроля эффективности лечения проводят повторные адаптометрические исследования.

Чувствительность темноадаптированного глаза у детей с возрастом увеличивается. Наиболее высокий уровень
кривой темновой адаптации наблюдается у детей 12- 14 лет, он значительно превышает уровень кривой взрослого человека.

Об устойчивости функционирования сетчатки можно судить по фото (свето) стрессу. Методика исследования состоит в следующем. После предварительного определения остроты зрения на исследуемый глаз воздействуют ярким источником света (лампа-вспышка или засвет глаза ручным электроофтальмоскопом в течение 30 секунд). Затем определяют время, в течение которого зрение достигает исходной величины. Восстановление зрения в течение 30-40 секунд свидетельствует о нормальном функционировании центральной ямки сетчатки.

Важной зрительной функцией является цветоощущение . По состоянию цветового зрения можно судить о заболеваниях сетчатки и зрительных путей.

Существуют немые и гласные методы исследования цветоощущения . Для исследования гласным методом используют полихроматические таблицы Рабкина, на цветовом поле которых изображены цифры, составленные из разноцветных кружков (рис. 22).

Рис. 22. Полихроматическая таблица для исследования цветоощущения.

В связи с тем, что цветоаномалы судят о цветовых тонах по их яркости, фон таблиц и цифры на них имеют одинаковую яркость, но различные цветовые оттенки. Поэтому больные с нарушенным цветоощущением не могут правильно назвать нарисованные на таблице знаки. На основании анализа результатов исследования можно дифференцировать один вид нарушения цветоощущения от другого, судить о том, восприятие какого цвета больше страдает у больного - красного (протанопия) или зеленого (дейтеранопия). С помощью специальных таблиц можно разграничить приобретенные нарушения цветового зрения от врожденных.?

Исследование цветового чувства с помощью полихроматических таблиц Рабкина проводят следующим образом:(рис. 23)

Рис. 23. Исследование цветоощущения.

исследуемый садится перед окном, а врач - спиной к окну на расстоянии 1 м от пациента и держит таблицы. Показ каждой из них продолжается в течение 5-6 секунд. Немой метод исследования цветового зрения состоит в том, что обследуемому показывают мотки ниток, очень близких по тону, и предлагают разложить их на отдельные группы соответствующего цвета.

Для правильного формирования цветового зрения необходимо, чтобы ребенок с первых дней жизни находился в хорошо освещенном помещении. С трехмесячного возраста, с момента появления прочной бинокулярной фиксации, следует использовать яркие игрушки, учитывая, что наиболее эффективными раздражителями, оказывающими стимулирующее влияние на функции органа зрения, являются средневолновые излучения - желтые, желто-зеленые, красные, оранжевые и зеленые цвета.

Следует помнить, что цветоаномалия встречается примерно у 5% мужчин, а у женщин в 100 раз реже.

Чрезвычайно важное значение для некоторых видов профессиональной деятельности имеет состояние бинокулярного зрения (способность пространственного восприятия изображения при участии в акте зрения обоих глаз).

Бинокулярное зрение и высшая форма его - стереоскопическое зрение - дают восприятие глубины, позволяют оценить расстояние предметов от исследователя и друг от друга. Оно возможно при достаточно высокой (0,3 и выше) остроте зрения каждого глаза, нормальной работе сенсорного и моторного аппаратов.

Монокулярное зрение чаще встречается у больных с косоглазием, при значительной (свыше 3,0 D) анизометропии (разная рефракция глаз) и анизейконии (разные размеры изображений на сетчатке и в зрительных центрах), некорригированной высокой степени дальнозоркости и астигматизме. Нефункционирующий глаз в таких случаях включается в работу только тогда, когда закрывается функционирующий. При монокулярном зрении ребенок лишен возможности правильно оценить глубину расположения предметов. Однако жизненный опыт, приобретенные навыки помогают даже человеку с одним глазом в какой-то мере восполнять имеющийся недостаток и правильно ориентироваться в окружающей обстановке.

Более совершенной формой по сравнению с монокулярным является одновременное зрение . В этом случае функционируют оба глаза, но с раздельными полями зрения. Поэтому участие обоих глаз в зрении возможно до тех пор, пока не фиксируется внимание на каком-либо предмете. При фиксации внимания на одной из точек пространства изображение, принадлежащее одному из глаз, исключается из восприятия.

Развитие бинокулярного зрения начинается с бинокулярной фиксации у ребенка на 3-м месяце жизни, а формирование его заканчивается к 6-12 годам.

Аппаратура для исследования бинокулярного зрения разнообразна. В основе устройства всех приборов лежит принцип разделения полей зрения правого и левого глаза . Наиболее прост и удобен в обращении прибор, в котором это разделение осуществляется с помощью дополнительных цветов; эти цвета при наложении друг на друга не пропускают света - четырехточечный цветовой аппарат (рис. 24).

Рис. 24. Четырехточечный цветовой аппарат.
а - расположение цветовых тестов в прибо¬ре; б - при рассматривании в цветных очках (красное стекло перед правым глазом, зеленое - перед левым) при наличии бинокулярного зрения, когда ведущий глаз правый; в - то же, когда ведущий глаз левый; г - при монокулярном зрении левого глаза; д - при монокулярном зрении правого глаза, е - при одновременном зрении.

Используются красный и зеленый цвета. На передней поверхности прибора имеется несколько отверстий?с красными и зелеными светофильтрами, а одно отверстие прикрывают матовым стеклом; изнутри прибор освещается лампой. Обследуемый надевает очки с красно-зелеными фильтрами. При этом глаз, перед которым стоит красное стекло, видит только красные объекты, другой - зеленые. Бесцветный объект можно видеть как правым, так и левым глазом. Поэтому при монокулярном зрении (предположим, участвует в зрении глаз, перед которым стоит красное стекло) обследуемый увидит красные объекты и окрашенный в красный цвет бесцветный объект. При нормальном бинокулярном зрении видны все красные и зеленые объекты, а бесцветный кажется окрашенным в красно-зеленый цвет, так как воспринимается и правым и левым глазом. Если имеется выраженный ведущий глаз, то бесцветный кружок окрасится в цвет стекла, поставленного перед ведущим глазом. При одновременном зрении обследуемый видит 5 объектов.

Элементарно о наличии бинокулярного зрения можно судить по появлению двоения при смещении одного из глаз, когда на него надавливают пальцем через веко. Бинокулярное зрение определяется также по установочному движению глаз. Если при фиксации обследуемым какого - либо предмета прикрыть один его глаз ладонью, то при наличии скрытого косоглазия глаз под ладонью отклонится в сторону. При отнятии руки в случае наличия у больного бинокулярного зрения глаз совершит установочное движение для получения бинокулярного восприятия.

Практические навыки :
1. Проверить остроту зрения ориентировочно и по таблицам.
2. Исследовать поле зрения контрольным способом и на периметре.
3. Исследовать цветоощущение с помощью полихроматических таблиц Рабкина и немым способом.
4. Определить характер зрения на четырехточечном цветовом аппарате и ориентировочным методом.

Статья из книги: .