Характеристики и свойства

Как происходит обмен газов в тканях. Газообмен в тканях и легких. Строение дыхательной системы

Газообмен в тканях подчиняется тем же закономерностям, что и газообмен в легких (диффузия газов идет по направлению градиентов их напряжения, ее скорость зависит от напряже­ния газов, площади кровеносных капилляров, толщины диф­фузионного слоя и свойств газов).

Газообмен кислорода. Напряжение кислорода в тканевых структурах зависит от степени удаления этой структуры от кро­веносных капилляров. В наиболее удаленных от капилляра участках ткани (в так называемом мертвом углу) оно может быть 0-1 мм рт.ст., а в начальном участке капилляра около 90 мм рт.ст. Таким образом, градиент напряжения кислорода между кровью и клетками ткани может достигать 90 мм рт.ст. В венозном конце капилляра р0 2 снижается до 40 мм рт.ст., и прилежащие к этому участку клетки имеют худшие условия до­ставки кислорода. Межкапиллярное расстояние в сердечной мышце составляет около 25 мкм, в коре большого мозга - 40 мкм, в скелетных мышцах - 80 мкм. Для нормального тече­ния окислительных процессов в клетках достаточно напряже­ния кислорода, равного 1 мм рт.ст.

Эффективность захвата кислорода тканями характеризует коэффициент утилизации кислорода (КУК) - выраженное в процентах отношение объема кислорода, поглощенного тка­нью из крови за единицу времени, ко всему объему кислорода, доставленному кровью в сосуды ткани за то же время. В состо­янии физического покоя у человека средняя (по всем органам) величина КУК составляет 30-40%. При физической нагрузке она увеличивается до 50-60%. Даже в покое величина КУК в разных органах неодинакова. Максимальный КУК в сердце -70-80%.

Понижение напряжения кислорода в тканях или нарушение его использования для тканевого дыхания называют гипокси­ей. Гипоксия может быть результатом нарушения вентиляции легких или недостаточности кровообращения, нарушения диф­фузии газов в тканях, а также недостаточной активности био­химических ферментных систем в клетках.

Гипероксия - повышение напряжения кислорода в крови и тканях. Это состояние может развиться при дыхании человека чистым кислородом (для взрослого такое дыхание допустимо не более 4 ч) или помещении его в камеру с повышенным давлени­ем дыхательной смеси. При гипероксии постепенно развивают­ся симптомы кислородного отравления (тошнота, звон в ушах, тик мышц лица, перевозбуждение ЦНС, судороги).

Газообмен углекислого газа. Градиент напряжения угле­кислого газа между притекающей кровью и клетками, окру­жающими капилляр ткани, может достигать 40 мм рт.ст. (40 мм рт.ст. в артериальной крови идо 60-80 мм рт.ст. в глу­боких слоях клеток). Эта сила обеспечивает выход углекисло­го газа в капиллярную кровь, напряжение углекислого газа в Не й повышается до 46 мм рт.ст., а содержание углекислого газа До 56-58 об. %. Около четверти углекислого газа, выходящего Из ткани в кровь, связывается с гемоглобином, остальная Ча сть благодаря ферменту карбоангидразе соединяется с водой и образует угольную кислоту, которая быстро нейтрализуется п Утем присоединения ионовNa + и К + и в виде бикарбонатов транспортируется к легким. Поскольку ткани (особенно жиро­вая и костная) содержат большое количество растворенного и связанного углекислого газа, они могут выполнять роль буфе­ра, захватывая углекислый газ при гиперкапнии и отдавая при гипокапнии.

Тканевое дыхание. Под тканевым дыханием понимают ряд окислительно-восстановительных процессов и реакций, про­текающих с участием кислорода. Окисление - это отдача электронов; восстановление, напротив, присоединение электронов; кислород в таких реакциях выполняет роль акцеп­тора электронов, окислителя. В ниже приведенной реакции взаимодействия водорода с кислородом водород окисляется, а кислород восстанавливается. Присоединение четырех элект­ронов к молекуле 0 2 завершается образованием воды и явля­ется основной реакцией потребления 0 2 в клетках аэробных организмов:

2Н 2 + 0 2 2Н 2 0 + тепло (239 кДж/моль).

Как видно из уравнения, реакция сопровождается высво­бождением значительного количества энергии и знакома каж­дому человеку из уроков химии в школе (реакция гремучего га­за). Однако взрыва в клетке не происходит, потому что атомы водорода являются частью органических субстратов (это не молекулярный водород) и присоединяются к кислороду не сра­зу, а постепенно через ряд промежуточных переносчиков. Эти вещества формируют цепь переноса набор дыхательных ферментов, упорядоченно расположенных и формирующих полиферментные комплексы. Энергия при таком переносе ак­кумулируется в форме градиента концентрации ионов водоро­да. Процессы тканевого дыхания катализируются ферментами класса оксидоредуктаз, расположенными на внутренней мем­бране митохондрий. На этих мембранах происходит и заверша­ющая реакция - образование воды.

В системе переноса ионов водорода и электронов в мито­хондриях участвуют четыре разных полиферментных комплек­са (рис. 10.6). Роль переносчиков в них выполняют относи­тельно небольшие органические молекулы: производные ниа- цина (витамина РР) - никотинамидадениндинуклеотид(НДД+) и никотинамидадениндинуклеотидфосфат (НДДФ); производ­ные витамина В 2 - флавинадениндинуклеотид (ФДД) и фла* винмононуклеотид (ФМН); хорошо растворимый в липида*

НАДН+Н*

Рас. 10.6. Последовательность включения ферментных комплексов в тканевое дыхание

мембран убихинон (кофермент Q) и группа гемсодержащих белков (цитохромов Ь, с, а, аз). В системе переноса электронов важна роль железа, которое включается в состав ферментов в структуре гема (в цитохромах) или в составе комплексаFeS.

Завершающим этапом работы дыхательной цепи является реакция, катализируемая ферментом цитохромоксидазой, ко­торая через свой кофермент аз передает электроны непосред­ственно кислороду и последний взаимодействует с протонами с образованием воды. Молекула кислорода принимает четыре электрона и формирует две молекулы воды.

Во время переноса электронов комплексы дыхательной цепи (1, 3 и 4-й) перекачивают протоны из матрикса в межмембранное пространство и на внутренней мембране возникает градиент протонов (градиент электрохи­мического потенциала). Этот градиент используется особым комплексом Ферментов (называемым АТФ-синтетазой) для синтеза АТФ. Для синте- за и переноса одной молекулы АТФ из митохондрии в цитоплазму исполь­зуется энергия движения четырех протонов по электрохимическому гра­диенту через внутреннюю мембрану митохондрии. Поскольку в процессе ° б разования двух молекул воды в межмембранное пространство митохон- ■Фии переносится 20 протонов, то их энергии хватает на синтез пяти моле­кул АТФ (20:4-5). Возможно функционирование и укороченного варианта дыхательной цепи, когда переносится только 12 протонов и синтезируется только три молекулы АТФ.

Такой механизм синтеза АТФ за счет энергии градиента электрохимического потенциала получил название окисли­тельного фосфорилирования и составляет основу получения АТФ в аэробных условиях. Образованная таким путем АТф является основным источником энергии для протекания жиз­ненных процессов у высокоорганизованных живых существ.

Сопряжение между переносом электронов и синтезом АТФ может нарушаться в присутствии некоторых химических соединений или при возникновении условий, повышающих проницаемость внутренней мем­браны митохондрий для протонов. В этом случае протоны переходят в матрикс, минуя АТФ-синтетазу, синтез АТФ замедляется. Энергия пере­носа элетронов высвобождается в форме тепла, а клетки испытывают энергетический голод. Такие события получили название разобщение окислительного фосфорилирования, а вещества, которые его вызы­вают, - разобщители. Например, сильнодействующим разобщителем является 2, 4-динитрофенол. В митохондриях бурой жировой ткани роль разобщителя выполняет специальный белок - термогенин. Митохонд­рии, содержащие термогенин, являются хорошими источниками тепла и помогают приспосабливаться к низким температурам.

Известно большое количество ингибиторов переноса элек­тронов по дыхательной цепи. Они являются сильнодействую­щими ядами (цианистый водород и его производные). Их дей­ствие вызывает прекращение переноса электронов и, следова­тельно, прекращение дыхания и смерть.

Молекула кислорода может присоединять от одного до четырех элект­ронов. В зависимости от количества принятых электронов возникают раз­ные производные кислорода. Присоединение четырех электронов к моле­куле кислорода завершается образованием воды. Присоединение иного числа электронов к молекуле кислорода приводит в образованию так назы­ваемых активных форм кислорода: супероксидного анион-радикала (один электрон), пероксидного радикала (два электрона) и гидроксильного ради­кала (три электрона). Эти формы кислорода обладают высокой реакцион­ной способностью, и образование их в значительных количествах может оказывать повреждающий эффект на клетку. Это свойство кислорода, в частности, используют макрофаги, генерируя активные формы кислород 3 для разрушения фагоцитируемых ими микроорганизмов.

В пероксисомах оксидоредуктазы также переносят водоро- ди на кислород, однако при этом реакция ведет к образованию ^ероксидаводорода (пероксидного радикала кислорода):

Н 2 + 0 2 -> н 2 о 2 .

Образуются активные формы кислорода и в мембранах эн- доплазматической сети. Обычно количество формирующихся активных форм кислорода находится под контролем специаль­ных антиоксидантных систем. Различают ферментную и не­ферментную антиоксидантные системы. К ферментам, разру­шающимактивные формы кислорода, относятся супероксид- дисмутаза, каталаза, глутатионпероксидаза и др. Нефермента -тивноограничивают действие радиклов кислорода витамины Е, С и А, мочевая кислота и другие соединения.

Еще одной формой потребления кислорода клетками явля­ются процессы гидроксилирования, при которых кислород присоединяется к молекуле, формируя в ней гидроксильную группу. Эти реакции широко используются для борьбы с гид­рофобными молекулами, оказывающими неблагоприятное воздействие (ксенобиотики) на клетки. Их гидрокислирование позволяет в последующем присоединить гидрофильные моле­кулы (глюкуроновую кислоту, сульфат) и, повысив раствори­мость, вывести их из организма почками.

Экскреторная функция легких - удаление более 200 летучих веществ, образовавшихся в организме или попадающих в него извне. В частности, образующиеся в организме углекислый газ, метан, ацетон, экзогенные вещества (этиловый спирт, этиловый эфир), наркотические газообразные вещества (фторотан, закись азота) в различной степени удаляются из крови через легкие. С поверхности альвеол испаряется также вода.

Кроме кондиционирования воздуха легкие участвуют в защите организма от инфекций. Осевшие на стенки альвеол микроорганизмы захватываются и уничтожаются альвеолярными макрофагами. Активированные макрофаги вырабатывают хемотаксические факторы, привлекающие нейтрофильные и эозинофильные гранулоциты, которые выходят из капилляров и участвуют в фагоцитозе. Макрофаги с поглощенными микроорганизмами способны мигрировать в лимфатические капилляры и узлы, в которых может развиться воспалительная реакция. В защите организма от инфекционных агентов, попадающих в легкие с воздухом, имеют значение образующиеся в легких лизоцим, интерферон, иммуноглобулины (IgA, IgG, IgM), специфические лейкоцитарные антитела.

Фильтрационная и гемостатическая функция легких — при прохождении крови через малый круг в легких задерживаются и удаляются из крови мелкие тромбы и эмболы.

Тромбы разрушаются фибринолитической системой легких. Легкими синтезируется до 90% гепарина, который, попадая в кровь, препятствует ее свертыванию и улучшает реологические свойства.

Депонирование крови в легких может достигать до 15% объема циркулирующей крови. При этом не происходит выключения крови, поступившей в легкие из циркуляции. Наблюдается увеличение кровенаполнения сосудов микроциркуляторного русла и вен легких и «депонированная» кровь продолжает участвовать в газообмене с альвеолярным воздухом.

Метаболическая функция включает: образование фосфолипидов и белков сурфактанта, синтез белков, входящих в состав коллагена и эластических волокон, выработку мукополисахаридов, входящих в состав бронхиальной слизи, синтез гепарина, участие в образовании и разрушении биологически активных и других веществ.

В легких ангиотензин I превращается в высокоактивный сосудосуживающий фактор — ангиотензин II, на 80% инактивируется брадикинин, захватывается и депонируется серотонин, а также 30-40% норадреналина. В них инактивируегся и накапливается гистамин, инактивируется до 25% инсулина, 90-95% простагландинов группы Е и F; образуются простагландин (сосудорасширяющий простаниклин) и оксид азота (NO). Депонированные биологически активные вещества в условиях стресса могут выбрасываться из легких в кровь и способствовать развитию шоковых реакций.

Таблица. Недыхательные функции легких

Функция

Характеристика

Защитная

Очищение воздуха (клетки мерцательного эпителия. реологические свойства), клеточный (альвеолярные макрофаги, нейтрофилы, лимфоциты), гуморальный (иммуноглобулины, комплемент, лактоферрин, антипротеазы, интерферон) иммунитет, лизоцим (серозные клетки, альвеолярные макрофаги)

Детоксикационная

Оксидазная система

Синтез физиологически активных веществ

Брадикинин, серотонин, лейкотриены, тромбоксан А2, кинины, простагландины, NO

Метаболизм различных веществ

В малом круге инактивируется до 80 % брадикини- на, до 98 % серотонина, до 60 % каликреина

Липидный обмен

Синтез поверхностно-активных веществ (сурфактант), синтез собственных клеточных структур

Белковый обмен

Синтез коллагена и эластина («каркас» легкого)

Углеводный обмен

Мри гипоксии до 1/3 потребляемого СЬ на окисление глюкозы

Гемостатическая

Синтез простациклина, NO, АДФ, фибринолиз

Кондиционирующая

Увлажнение воздуха

Выделительная

Удаление продуктов метаболизма

Водный баланс

Испарение воды с поверхности, транскапиллярный обмен (перспирация)

Терморегуляция

Теплообмен в верхних дыхательных путях

Депонирующая

До 500 мл крови

Гипоксическая ва- зоконстрнкция

Сужение сосудов легкого при снижении О2 в альвеолах

Газообмен в легких

Важнейшая функция легких — обеспечение газообмена между воздухом легочных альвеол и кровью капилляров малого круга. Для понимания механизмов газообмена необходимо знать газовый состав обменивающихся между собой сред, свойства альвеолокапиллярных структур, через которые идет газообмен, и учитывать особенности легочного кровотока и вентиляции.

Состав альвеолярного и выдыхаемого воздуха

Состав атмосферного, альвеолярного (содержащегося в легочных альвеолах) и выдыхаемого воздуха представлен в табл. 1.

Таблица 1. Содержание основных газов в атмосферном, альвеолярном и выдыхаемом воздухе

На основе определения процентного содержания газов в альвеолярном воздухе рассчитывают их парциальное давление. При расчетах давление водяного пара в альвеолярном газе принимают равным 47 мм рт. ст. Например, если содержание кислорода в альвеолярном газе равно 14,4%, а атмосферное давление 740 мм рт. ст., то парциальное давление кислорода (р0 2) составит: р0 2 = [(740-47)/100] . 14,4 = 99,8 мм рт. ст. В условиях покоя парциальное давление кислорода в альвеолярном газе колеблется около 100 мм рт. ст., а парциальное давление углекислого газа около 40 мм рт. ст.

Несмотря на чередование вдоха и выдоха при спокойном дыхании состав альвеолярного газа изменяется лишь на 0,2- 0,4%, поддерживается относительное постоянство состава альвеолярного воздуха и газообмен между ним и кровью идет непрерывно. Постоянство состава альвеолярного воздуха поддерживается благодаря малой величине коэффициента вентиляции легких (КВЛ). Этот коэффициент показывает, какая часть функциональной остаточной емкости обменивается на атмосферный воздух за 1 дыхательный цикл. В норме КВЛ равен 0,13-0,17 (т.е. при спокойном вдохе обменивается приблизительно 1/7 часть ФОЕ). Состав альвеолярного газа по содержанию кислорода и углекислого газа на 5-6% отличается от атмосферного.

Таблица. 2. Газовый состав вдыхаемого и альвеолярного воздуха

Коэффициент вентиляции различных областей легких может отличаться, поэтому состав альвеолярного газа имеет разную величину не только в отдаленных, но и в соседних участках легкого. Это зависит от диаметра и проходимости бронхов, выработки сурфактанга и растяжимости легких, положения тела и степени наполнения кровью легочных сосудов, скорости и соотношения длительностей вдоха и выдоха и т.д. Особенно сильное влияние на этот показатель оказывает гравитация.

Рис. 2. Динамика движения кислорода в легких и тканях

С возрастом величина парциального давления кислорода в альвеолах практически не меняется, несмотря на значительные возрастные изменения многих показателей внешнего дыхания (уменьшение , ОЕЛ, проходимости бронхов, увеличение ФОЕ, ООЛ и т.д.). Сохранению устойчивости показателя рО 2 в альвеолах способствует возрастное увеличение частоты дыхания.

Диффузия газов между альвеолами и кровью

Диффузия газов между альвеолярным воздухом и кровью подчиняется общему закону диффузии, согласно которому се движущей силой является разность парциальных давлений (напряжений) газа между альвеолами и кровью (рис. 3).

Газы, находящиеся в растворенном состоянии в плазме крови, притекающей к легким, создают их напряжение в крови, которое выражают в тех же единицах (мм рт. ст.), чтои парциальное давление в воздухе. Средняя величина напряжения кислорода (рО 2) в крови капилляров малого круга равна 40 мм рт. ст., а его парциальное давление в альвеолярном воздухе — 100 мм рт. ст. Градиент давления кислорода между альвеолярным воздухом и кровью составляет 60 мм рт. ст. Напряжение углекислого газа в притекающей венозной крови — 46 мм рт. ст., в альвеолах — 40 мм рт. ст. и градиент давления углекислого газа составляет 6 мм рт. ст. Эти градиенты и являются движущей силой газообмена между альвеолярным воздухом и кровью. Следует учитывать, что указанные величины градиентов имеются лишь в начале капилляров, но мере продвижения крови по капилляру разность между парциальным давлением в альвеолярном газе и напряжением в крови уменьшается.

Рис. 3. Физико-химические и морфологические условия газообмена между альвеолярным воздухом и кровыо

На скорость обмена кислорода между альвеолярным воздухом и кровью влияют как свойства среды, через которую идет диффузия, так и время (около 0,2 с), в течение которого происходит связывание перешедшей порции кислорода с гемоглобином.

Для перехода из альвеолярного воздуха в эритроцит и связи с гемоглобином молекула кислорода должна продиффундировать через:

  • слой сурфактанта, выстилающий альвеолу;
  • альвеолярный эпителий;
  • базальные мембраны и интерстициальное пространство между эпителием и эндотелием;
  • эндотелий капилляра;
  • слой плазмы крови между эндотелием и эритроцитом;
  • мембрану эртроцита;
  • слой цитоплазмы в эритроците.

Суммарное расстояние этого диффузионного пространства составляет от 0,5 до 2 мкм.

Факторы, влияющие на диффузию газов в легких, отражены в формуле Фика:

V = −kS(P 1 −P 2)/d,

где V — объем диффундирующего газа; к — коэффициент проницаемости среды для газов, зависящий от растворимости газа в тканях и его молекулярной массы; S — площадь диффузионной поверхности легких; Р 1 и Р 2 , — напряжение газа в крови и альвеолах; d — толщина диффузионного пространства.

На практике в диагностических целях определяют показатель, называемый диффузионная способность легких для кислорода (ДЛ О2). Она равна объему кислорода, продиффундировавшему из альвеолярного воздуха в кровь через всю поверхность газообмена за 1 мин при градиенте давления кислорода 1 мм рт. ст.

ДЛ О2 = Vo 2 /(P 1 −P 2)

где Vo 2 — диффузия кислорода в кровь за 1 мин; Р 1 — парциальное давление кислорода в альвеолах; Р 2 — напряжение кислорода в крови.

Иногда этот показатель называют коэффициентом переноса. В норме, когда взрослый человек находится в состоянии покоя, величина ДЛ О2 = 20-25 мл/мин мм рт. ст. При физической нагрузке ДЛ О2 увеличивается и может достигнуть 70 мл/ мин мм рт. ст.

У пожилых людей величина ДЛ О2 снижается; в 60 лет она приблизительно на 1/3 меньше, чем у молодых людей.

Для определения ДЛ О2 часто используют технически более просто выполнимое определение ДЛ СО. Делают один вдох воздуха, содержащего 0,3% угарного газа, задерживают дыхание на 10-12 с, затем делают выдох и, определяя содержание СО в последней порции выдыхаемого воздуха, рассчитывают переход СО в кровь: ДЛ О2 = ДЛ СО. 1,23.

Коэффициент проницаемости биологических сред для СО 2 в 20-25 раз выше, чем для кислорода. Поэтому диффузия С0 2 в тканях организма и в легких при меньших, чем для кислорода, градиентах его концентраций, идет быстро и углекислый газ, содержащийся в венозной крови при большем (46 мм рт. ст.), чем в альвеолах (40 мм рт. ст.), парциальном давлении, как правило, успевает выходить в альвеолярный воздух даже при некоторой недостаточности кровотока или вентиляции, в то время как обмен кислорода в таких условиях уменьшается.

Рис. 4. Газообмен в капиллярах большого и малого круга кровообращения

Скорость движения крови в легочных капиллярах такая, что один эритроцит проходит через капилляр за 0,75-1 с. Этого времени вполне достаточно для практически полного уравновешивания парциального давления кислорода в альвеолах и его напряжения в крови легочных капилляров. Для связывания кислорода гемоглобином эритроцита требуется лишь около 0,2 с. Также быстро происходит уравновешивание давления углекислого газа между кровью и альвеолами. В опекающей от легких по венам малого круга артериальной крови у здорового человека в обычных условиях напряжение кислорода составляет 85-100 мм рт. ст., а напряжение СО 2 -35-45 мм рт. ст.

Для характеристики условий и эффективности газообмена в легких наряду с ДЛ 0 применяется также коэффициент использования кислорода(КИ О2), который отражает количество кислорода (в мл), поглощаемого из 1 л, поступающего в легкие воздуха: КИ 02 = V O2 мл*мин -1 /МОД л*мин -1 В норме КИ = 35-40 мл*л -1 .

Газообмен в тканях

Газообмен в тканях подчиняется тем же закономерностям, что и газообмен в легких. Диффузия газов идет по направлению градиентов их напряжения, ее скорость зависит от величины этих градиентов, площади функционирующих кровеносных капилляров, толщины диффузионного пространства и свойств газов. Многие из названных факторов, а следовательно, и скорость газообмена, могут изменяться в зависимости от линейной и объемной скорости кровотока, содержания и свойств гемоглобина, температуры, рН, активности клеточных ферментов и ряда других условий.

Кроме этих факторов обмену газами (особенно кислорода) между кровью и тканями способствуют: подвижность молекул оксигемоглобина (диффузия их к поверхности мембраны эритроцита), конвекция цитоплазмы и интерстициальной жидкости, а также фильтрация и реабсорбция жидкости в микроциркуляторном русле.

Газообмен кислорода

Газообмен между артериальной кровью и тканями начинается уже на уровне артериол с диаметром 30-40 мкм и осуществляется на протяжении всего микроциркуляторного русла до уровня венул. Однако основную роль в газообмене играют капилляры. Для изучения газообмена в тканях полезно представление о гак называемом «тканевом цилиндре (конусе)», в который включаются капилляр и прилежащие к нему тканевые структуры, обеспечиваемые кислородом (рис. 5). О диаметре такого цилиндра можно судить по межкапиллярному расстоянию. Оно в сердечной мышце составляет около 25 мкм, в коре большого мозга — 40 мкм, в скелетных мышцах — 80 мкм.

Движущей силой газообмена в тканевом цилиндре является градиент напряжения кислорода. Различают продольный и поперечный его градиенты. Продольный градиент направлен по ходу капилляра. Напряжение кислорода в начальной части капилляра может составлять около 100 мм рт. ст. По мере продвижения эритроцитов к венозной части капилляра и диффузии кислорода в ткань рО2 падает в среднем до 35-40 мм рт. ст., но в некоторых условиях может понизиться и до 10 мм рт. ст. Поперечный градиент напряжения О2 в тканевом цилиндре может достигать 90 мм рт. ст. (в наиболее удаленных от капилляра участках ткани, в так называемом «мертвом углу», р0 2 может быть 0-1 мм рт. ст.).

Рис. 5. Схематическое представление «тканевого цилиндра» и распределения напряжения кислорода в артериальном и венозном концах капилляра в покое и при выполнении интенсивной работы

Таким образом, в тканевых структурах доставка кислорода к клеткам зависит от степени удаления их от кровеносных капилляров. Клетки, прилежащие к венозному участку капилляра, находятся в худших условиях доставки кислорода. Для нормального течения окислительных процессов в клетках достаточно напряжения кислорода 0,1 мм рт. ст.

На условия газообмена в тканях влияет не только межкапиллярное расстояние, но и направление движения крови в соседних капиллярах. Если направление течения крови в капиллярной сети, окружающей данную ячейку ткани, разнонаправленное, то это увеличивает надежность обеспечения ткани кислородом.

Эффективность захвата кислорода тканями характеризует величина коэффициента утилизации кислорода (КУК) — это выраженное в процентах отношение объема кислорода, поглощенного тканью из артериальной крови за единицу времени, ко всему объему кислорода, доставленному кровью в сосуды ткани за то же время. Определить КУК ткани можно по разнице содержания кислорода в крови артериальных сосудов и в венозной крови, оттекающей от ткани. В состоянии физического покоя у человека средняя величина КУК составляет 25-35%. Даже в покос величина КУК в разных органах неодинакова. В покое КУК миокарда составляет около 70%.

При физической нагрузке степень утилизации кислорода увеличивается до 50-60%, а в отдельных наиболее активно работающих мышцах и сердце может достигать 90%. Такое возрастание КУК в мышцах обусловлено, прежде всего, увеличением в них кровотока. При этом раскрываются не функционировавшие в покое капилляры, увеличивается площадь диффузионной поверхности и уменьшаются диффузионные расстояния для кислорода. Возрастание кровотока может быть вызвано как рефлекторно, так и под влиянием местных факторов, расширяющих сосуды мышц. Такими факторами являются повышение температуры работающей мышцы, увеличение рС0 2 и снижение рН крови, которые не только способствуют увеличению кровотока, но также вызывают снижение сродства гемоглобина к кислороду и ускорение диффузии кислорода из крови в ткани.

Понижение напряжения кислорода в тканях или затруднение его использования для тканевого дыхания называют гипоксией. Гипоксия может быть результатом нарушения вентиляции легких или недостаточности кровообращения, нарушения диффузии газов в тканях, а также недостаточности активности клеточных ферментов.

Развитие тканевой гипоксии скелетных мышц и сердца в определенной мере предотвращается имеющимся в них хромопротеином — миоглобином, выполняющим роль депо кислорода. Простетическая группа миоглобина подобна гему гемоглобина, а белковая часть молекулы представлена одной полипептидной цепью. Одна молекула миоглобина способна связать только одну молекулу кислорода, а 1 г миоглобина — 1,34 мл кислорода. Особенно много миоглобина содержится в миокарде — в среднем 4 мг/г ткани. При полной оксигенации миоглобина создаваемый им запас кислорода в 1 г ткани составит 0,05 мл. Этого кислорода может хватить на 3-4 сокращения сердца. Сродство миоглобина к кислороду выше, чем у гемоглобина. Давление полунасыщения Р 50 для миоглобина находится между 3 и 4 мм рт. ст. Поэтому в условиях достаточной перфузии мышцы кровью он запасает кислород и отдает его лишь при появлении условий, близких к гипоксии. Миоглобин у человека связывает до 14% общего количества кислорода в организме.

В последние годы открыты другие белки, способные связывать кислород в тканях и клетках. Среди них белок нейроглобин, содержащийся в ткани мозга, сетчатке глаза, и цитоглобин, содержащийся в нейронах и других типах клеток.

Гипероксия - увеличенное по отношению к норме напряжение кислорода в крови и тканях. Это состояние может развиться при дыхании человека чистым кислородом (для взрослого такое дыхание допустимо не более 4 ч) или помещении его в камеры с повышенным давлением воздуха. При гипероксии могут постепенно развиваться симптомы кислородного отравления. Поэтому при длительном использовании дыхания газовой смесью с повышенным содержанием кислорода его содержание не должно превышать в ней 50%. Особенно опасно повышенное содержание кислорода во вдыхаемом воздухе для новорожденных. Длительное вдыхание чистого кислорода создает угрозу развития повреждения сетчатки глаза, легочного эпителия и некоторых структур мозга.

Газообмен углекислого газа

В норме напряжение углекислого газа в артериальной крови колеблется в пределах 35-45 мм рт. ст. Градиент напряжения углекислого газа между притекающей артериальной кровью и клетками, окружающими капилляр ткани, может достигать 40 мм рт. ст. (40 мм рт. ст. в артериальной крови и до 60-80 мм в глубоких слоях клеток). Под действием этого градиента углекислый газ диффундирует из тканей в капиллярную кровь, вызывая повышение в ней напряжения до 46 мм рт. ст. и увеличение содержания углекислого газа до 56-58 об%. Около четверти от всего выходящего из ткани в кровь углекислого газа связывается с гемоглобином, остальная часть благодаря ферменту карбоангидразе соединяется с водой и образует угольную кислоту, которая быстро нейтрализуется путем присоединения ионов Na" и К" и в виде этих бикарбонатов транспортируется к легким.

Количество растворенного углекислого газа в организме человека составляет 100-120 л. Это примерно в 70 раз больше запасов кислорода в крови и тканях. При изменении напряжения углекислого газа в крови между нею и тканями идет его интенсивное перераспределение. Поэтому при неадекватной вентиляции легких уровень углекислого газа в крови изменяется медленнее, чем уровень кислорода. Поскольку жировая и костная ткани содержат особенно большое количество растворенного и связанного углекислого газа, то они могут выполнять роль буфера, захватывая углекислый газ при гиперкапнии и отдавая при гипокапнии.

Инструкция

В легочном дыхании принимают участие межреберные мышцы и диафрагма - плоская мышца, находящаяся на границе брюшной и грудной полостей. При сокращении диафрагмы давление в легких понижается давление, и в результате в них устремляется воздух. Выдох делается пассивно: легкие самостоятельно выталкивают воздух наружу. Процесс дыхания контролируется частью головного мозга – продолговатым мозгом. В нем находится центр регуляции дыхания, который реагирует на присутствие в крови углекислого газа. Как только его уровень повышается, центр посылает сигнал диафрагме по нервным путям, она сокращается, и происходит вдох. При повреждениях дыхательного центра применяют искусственную вентиляцию легких.

Процесс газообмена осуществляется в альвеолах легких - микроскопических пузырьках, находящихся на концах бронхиол. Они состоят из сквамозных (дыхательных) альвеоцитов, больших альвеоцитов и хеморецепторов. Основная роль в данном случае принадлежит кровеносной системе. Поступивший в альвеолы легких кислород проникает в стенки капилляров. Подобный процесс происходит вследствие разницы в крови и в воздухе, находящемся в альвеолах. Кровь в венах имеет меньшее давление, поэтому из альвеол кислород устремляется в капилляры. Углекислый газ в альвеолах имеет меньшее давление, поэтому из венозной крови он поступает в просвет альвеол.

В крови находятся эритроциты, содержащие белок гемоглобин. К гемоглобину присоединяются молекулы кислорода. Обогащенная кислородом кровь называется артериальной, она переносится к сердцу. Сердце перегоняет ее к клеткам тканей. В клетках кровь отдает кислород, а взамен забирает углекислый газ, который также переносится с помощью гемоглобина. Затем происходит обратный процесс: кровь поступает из тканевых капилляров в вены, в сердце и в легкие. В легких венозная кровь с углекислым газом поступает в альвеолы, углекислый газ вместе с воздухом выталкивается наружу. Двойной газообмен происходит в альвеолах молниеносно.

Жизненная емкость легких включает в себя дыхательный объем, а также резервные объемы вдоха и выдоха. Дыхательный объем – это количество воздуха, поступающее в легкие при 1-ом вдохе. Если после спокойного вдоха сделать усиленный вдох, в легкие поступит дополнительное количество воздуха, которое называется резервом объема вдоха. После спокойного выдоха можно выдохнуть еще некоторое количество воздуха (резервный объем выдоха). В целом, жизненная емкость легких составляет наибольшее количество воздуха, которое человек способен выдохнуть после глубокого вдоха.

Газообмен в легких. Вдыхаемый человеком воздух и выдыхаемый сильно различаются по составу. В атмосферном воздухе содержание кислорода доходит до 21%, углекислого газа - 0,03-0,04%. В выдыхаемом воздухе количество кислорода снижается до 16%, зато углекислого газа становится больше - 4-4.5%. Что же происходит с воздухом в легких?

Вы помните, что альвеолы легких образуют огромную поверхность. Все альвеолы окутаны кровеносными капиллярами, в которые по малому кругу кровообращения поступает венозная кровь из сердца. Стенки альвеол и капилляров очень тонкие. Кровь, которая попадает в легкие, бедна кислородом и насыщена углекислым газом. Воздух в легочных альвеолах, наоборот, богат кислородом, а углекислого газа в нем значительно меньше. Поэтому в соответствии с законами осмоса и диффузии кислород из легочных альвеол устремляется в кровь, где соединяется с гемоглобином эритроцитов. Кровь приобретает алую окраску. Углекислый газ из крови, где он содержится в избытке, проникает в легочные альвеолы. Из венозной крови в легочные альвеолы выделяется также вода, которая в виде пара при выдохе удаляется из легких.

Газообмен в тканях. В органах нашего тела постоянно происходят окислительные процессы, на которые расходуется кислород. Поэтому концентрация кислорода в артериальной крови, которая поступает в ткани по сосудам большого круга кровообращения, больше, чем в тканевой жидкости. В результате кислород свободно переходит из крови в тканевую жидкость и в ткани. Углекислый газ, который образуется в ходе многочисленных химических превращений, наоборот, переходит из тканей в тканевую жидкость, а из нее в кровь. Таким образом кровь насыщается углекислым газом.

Дыхательные движения. Газообмен в организме возможен только при условии постоянной смены воздуха в легких. Поэтому дыхание происходит постоянно. Вдохнув первый раз во время рождения, человек дышит всю жизнь. Дыхательный цикл складывается из вдоха и выдоха, которые ритмично следуют один за другим. В легких нет мышц, которые могли бы попеременно сжимать и расширять их. Легкие растягиваются пассивно, следуя за движениями стенок грудной полости. Дыхательные движения совершаются с помощью дыхательных мышц. В выдохе и вдохе участвуют две группы мышц. Основные дыхательные мышцы - это межреберные мышцы и диафрагма.

При сокращении наружных межреберных мышц ребра поднимаются, а диафрагма, сокращаясь, становится плоской. Поэтому обьем грудной полости увеличивается. Легкие, следуя за стенками грудной полости, расширяются, давление в них уменьшается и становится ниже атмосферного. Поэтому воздух по воздухоносным путям устремляется в легкие - происходит вдох.

При выдохе внутренние межреберные мышцы опускают ребра, диафрагма расслабляется и становится выпуклой. Ребра под действием собственного веса и сокращения внутренних межреберных мышц, а также мышц живота, которые прикрепляются к ребрам, опускаются. Грудная полость возвращается в исходное состояние, легкие уменьшаются в обьеме, давление в них увеличивается, становится чуть выше атмосферного. Поэтому избыток воздуха выходит из легких - происходит выдох.

Так осуществляются спокойный вдох и выдох. В глубоком вдохе принимают участие мышцы шеи, стенок грудной полости и живота.

Дыхательные движения совершаются с определенной частотой: у подростков - 12-18 в минуту, у взрослых - 16-20.

Жизненная емкость легких. Важным показателем развития органов дыхания является жизненная емкость легких. Это наибольший объем воздуха, который может выдохнуть человек после глубокого вдоха. Ее измеряют с помощью специального прибора - спирометра. У взрослого человека жизненная емкость в среднем составляет 3500 мл.

У спортсменов этот показатель обычно на 1000-1500 мл больше, а у пловцов может достигать 6200 мл. При большой жизненной емкости легкие лучше вентилируются, организм получает больше кислорода.

У тучных людей жизненная емкость легких на 10-11% меньше, поэтому у них обмен газов в легких понижен.

Регуляция дыхания. Деятельностью дыхательной системы управляет дыхательный центр. Он расположен в продолговатом мозге. Идущие отсюда импульсы координируют мышечные сокращения при вдохе и выдохе. От этого центра по нервным волокнам через спинной мозг поступают импульсы, которые вызывают в определенном порядке сокращение мышц, ответственных за вдох и выдох.

Возбуждение самого центра зависит от возбуждений, идущих от различных рецепторов, и от химического состава крови. Так, прыжок в холодную воду или обливание холодной водой вызывает глубокий вдох и задержку дыхания. Резко пахучие вещества также могут вызвать задержку дыхания. Это связано с тем, что запах раздражает обонятельные рецепторы в стенках носовой полости. Возбуждение передается в дыхательный центр, и его деятельность затормаживается. Все эти процессы осуществляются реф-лекторно.

Слабое раздражение слизистой оболочки полости носа вызывает чихание, а гортани, трахеи, бронхов- кашель. Это защитная реакция организма. При чихании, кашле инородные частицы, попавшие в дыхательные пути, удаляются из организма.

В дыхательном центре находятся клетки, чувствительные к малейшему изменению содержания углекислого газа в межклеточном веществе. Избыток углекислого газа возбуждает дыхательный центр, это, в свою очередь, вызывает учащение дыхания. Лишний углекислый газ быстро удаляется, и, когда его концентрация возвращается к норме, частота дыхания снижается.

Как вы видите, регуляция дыхания происходит рефлекторно, но под контролем коры полушарий большого мозга. Это легко доказать; ведь каждый из нас может по собственному желанию изменить частоту дыхательных движений.

Краткая история курения

Один из самых распространенных пороков человека - курение табака - имеет 500-летнюю историю. В Европу листья и семена табака были привезены из Америки моряками экспедиции Христофора Колумба. Сначала табак был объявлен всеисцеляющей лечебной травой. Вот как описывались его чудодейственные свойства в одной испанской книге: «Табак вызывает сон, избавляет от усталости, успокаивает боль, вылечивает головную боль...»

Поэтому нет ничего удивительного в том, что уже в XVI в. табак прочно завладел аристократическими салонами. Особенно популярным стало курение в XVII и XVIII вв. Мужчины, женщины и молодые люди начали курить, нюхать и жевать табак.

Рекомендуемый вначале как лекарственное средство, табак, однако, очень скоро приобрел плохую славу. Борьбу с табакокурением начала испанская королева Изабелла. Ее примеру последовал французский король Людовик XIV, а русский царь Михаил Федорович Романов приказал отрезать нос каждому, кто курит. Однако уже ничто не могло остановить распространение этой «дымящейся отравы». Курение табака превратилось в новую статью дохода для многих торговцев. Приблизительно в середине XVIII в. в Бразилии начали делать папиросы, а в начале XIX в. - производить сигареты.

Так за сравнительно короткое время были созданы все условия для быстрого распространения курения табака. Этот порок постепенно охватил все слои населения. В настоящее время курение - самый распространенный вид наркомании во всем мире.

Состав табачного дыма и его действие на организм

Для тканей легких очень опасно курение. Ведь смола, образующаяся при сгорании табака и бумаги, не может выводиться из легких и в течение многих лет оседает на стенках воздухоносных путей, буквально убивая клетки их слизистой оболочки. Легкие курильщика теряют свой естественный розовый цвет, становятся черными. Такие легкие чаще подвержены различным заболеваниям, в том числе и онкологическим. В настоящее время наука располагает тысячами доказательств, подтверждающих тот факт, что табак содержит губительные для организма человека вещества. Их около 400! Вредные вещества, содержащиеся в табачном дыме, могут быть объединены в четыре группы: ядовитые алкалоиды, раздражающие вещества, ядовитые газы, канцерогенные вещества.

Одним из самых известных веществ является никотин, получивший свое название по имени французского посланника в Лиссабоне Ж. Нико, который во второй половине XVI в. преподнес Марии Медичи эту «всеисцеляющую» травку для лечения мигрени. Никотин содержится в листьях различных растений: табака, индийской конопли, польского хвоща, некоторых плаунов и др. Одной капли чистого никотина (0,05 г) достаточно, чтобы умертвить человека. Никотин из крови матери легко проникает через плаценту в кровеносную систему плода.

В табачных листьях, кроме никотина, содержится еще 11 алкалоидов, важнейшие из которых: норникотин, никотирин, никотеин, никотимин. Все они сходны с никотином по строению и свойствам и поэтому имеют похожие названия.

Печальная статистика раковых заболеваний курильщиков достаточно красноречива. Канцерогенным действием обладают различные ароматические углеводороды, которые содержатся в табачном дыму (например, бензопирен), некоторые содержащиеся в дыму фенолы, а также нитрозамин, гидразин, винилхлорид и др. Из неорганических веществ - это в первую очередь соединения мышьяка и кадмия, радиоактивный полоний, олово и висмут-210.

Из табачного дыма выделен десяток веществ, оказывающих раздражающее действие на слизистую оболочку. Наиболее важным из них является ненасыщенный альдегид пропеналь. Он обладает высокой химической и биологической активностью, вызывая у курильщиков кашель.

В газовой фракции табачного дыма содержится большое число неорганических соединений, обладающих высокой химической и биологической активностью, таких как оксид углерода, сероводород, цианид водорода и др.

  • Когда больной гриппом или другим недугом чихает, микроскопические капельки слюыы и слизи, содержащие бактерии и вирусы, летят на расстояние до 10 м, причем некоторое время эти капельки способны «висеть» в воздухе, заражая окружающих.

Проверьте свои знания

  1. Расскажите, какие процессы происходят в легочных альвеолах.
  2. Каков механизм газообмена в тканях?
  3. Каким образом совершаются дыхательные движения?

Подумайте

  1. Чем отличается легочный газообмен от тканевого?
  2. Что выгоднее для ныряльщика - сделать перед погружением несколько вдохов и выдохов или набрать в легкие как можно больше воздуха?

В альвеолах легких происходит газообмен: кровь насыщается кислородом и выделяет углекислый газ. В тканях происходит обратный процесс. Вентиляция легких происходит благодаря вдоху и выдоху, которые осуществляются при сокращении и расслаблении диафрагмы и межреберных мышц. Деятельностью дыхательной системы руководит нервная система. Изменение концентрации углекислого газа в крови влияет на частоту дыхательных движений.

В тканях кровь отдает кислород и поглощает углекислоту. Газообмен в капиллярах тканей большого круга, так же как и в легочных капиллярах, обусловлен диффузией вследствие разности парциальных напряжений газов в крови и в тканях.

Напряжение углекислого газа в клетках может достигать 60 мм, в тканевой жидкости оно весьма изменчиво и в среднем составляет 46 мм, а в притекающей к тканям артериальной крови - 40 мм рт. ст. Диффунтируя по направлению более низкого напряжения, углекислый газ переходит из клеток в тканевую жидкость и далее в кровь, делая ее венозной. Напряжение углекислого газа в крови при прохождении ее по капиллярам становится равным напряжению углекислого газа в тканевой жидкости.

Клетки весьма энергично потребляют кислород, поэтому его парциальное напряжение в протоплазме клеток очень низко, а при усилении их активности может быть равно нулю. В тканевой жидкости напряжение кислорода колеблется между 20 и 40 мм. Вследствие этого кислород непрерывно поступает из артериальной крови, приносимой к капиллярам большого круга кровообращения (здесь напряжение кислорода равно 100 мм рт. ст.), в тканевую жидкость. В результате в оттекающей от тканей венозной крови напряжение кислорода значительно ниже, чем в артериальной, составляя 40 мм.

Кровь, проходя по капиллярам большого круга, отдает не весь свой кислород. Артериальная кровь содержит около 20 об.% кислорода, венозная же кровь - примерно 12 об. % кислорода. Таким образом, из 20 об. % кислорода ткани получают 8 об. %, т. е. 40% всего кислорода, содержащегося в крови.

То количество кислорода в процентах от общего содержания его в артериальной крови, которое получают ткани, носит название коэффициента утилизации кислорода. Его вычисляют путем определения разности содержания кислорода в артериальной и венозной крови. Эту разность делят на содержание кислорода в артериальной крови и умножают на 100.

Коэффициент утилизации кислорода меняется в зависимости от ряда физиологических условий. В покое организма он равен 30-40%. При тяжёлой же мышечной работе содержание кислорода в оттекающей от мышц венозной крови уменьшается до 8-10 об. % и, следовательно, утилизация кислорода повышается до 50-60%.

Более быстрый переход кислорода в ткани обеспечивается раскрытием нефункционировавших капилляров в работающей ткани. Повышению коэффициента утилизации способствует также усиленное образование кислот - молочной и угольной, что понижает сродство гемоглобина к кислороду и обеспечивает более быструю диффузию кислорода из крови. Наконец, увеличению утилизации кислорода содействуют повышение температуры работающих мышц и усиление ферментативных и энергетических процессов, протекающих в клетках. Таким образом, доставка кислорода к тканям регулируется в соответствии с интенсивностью окислительных процессов.