Методики развития

Биологическое действие радиации - реферат. Биологическое действие радиации. План Введение Введение Понятие «Биологическое действие радиации» Понятие «Биологическое действие радиации» Прямое и косвенное

Радиоактивность это испускание ядрами некоторых элементов различных частиц, сопровождающееся переходом ядра в другое состояние и изменением его параметров. Явление радиоактивности было открыто французским ученым Анри Беккерелем в 1896 году для солей урана.

В 1899 году под руководством английского ученого Эрнста Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения.

ТРИ составляющие радиационного излучения Бета – частицы представляют собой поток быстрых электронов, летящих со скоростями близкими к скорости света. Они проникают в воздух до 20 м. Альфа частицы – это потоки ядер атомов гелия. Скорость этих частиц 20000 км/с, что превышает скорость современного самолета (1000 км/ч) в 72000 раз. Альфа – лучи проникают в воздух до 10 см. Гамма-излучение представляет собой электромагнитное излучение, испускаемое при ядерных превращениях или взаимодействии частиц

Каждый тип излучения обладает своей проникающей способностью, то есть свободностью пройти сквозь вещество. Чем большей плотностью обладает вещество, тем хуже оно пропускает излучение.

Альфа излучение — обладает низкой проникающей способностью; — задерживается листом бумаги, одеждой, кожей человека; — попавшие альфа частицы внутрь организма, представляют большую опасность.

-излучение По своим свойствам -частицы обладают малой проникающей способностью и не представляют опасности до тех пор, пока радиоактивные вещества, испускающие -частицы, не попадут внутрь организма через рану, с пищей или вдыхаемым воздухом; тогда они становятся чрезвычайно опасными.

Бета излучение — имеет гораздо большую проникающую способность; — может проходить в воздухе расстояние до 5 метров, способно проникать в ткани организма; — слой алюминия толщиной в несколько миллиметров способно задержать бета-частицы.

-излучение — частицы могут проникать в ткани организма на глубину один – два сантиметра.

Гамма излучение — обладает ещё большой проникающей способностью; — задерживается толстым слоем свинца или бетона.

-излучение Большой проникающей способностью обладает -излучение, которое распространяется со скоростью света; его может задержать лишь толстая свинцовая или бетонная плита.

Основные понятия, термины и определения Радиация — это явление, происходящее в радиоактивных элементах, ядерных реакторах, при ядерных взрывах, сопровождающееся испусканием частиц и различными излучениями, в результате чего возникают вредные и опасные факторы, воздействующие на людей. Проникающая радиация следует понимать как поражающий фактор ионизирующих излучений, возникающих, например, при взрыве атомного реактора. Ионизирующее излучение — это любое излучение, вызывающее ионизацию среды, т. е. протекание электрических токов в этой среде, в том числе и в организме человека, что часто приводит к разрушению клеток, изменению состава крови, ожогам и другим тяжелым последствиям.

Источники внешнего облучения 1. Космические лучи (0, 3 м. Зв/год), дают чуть меньше половины всего внешнего облучения получаемого населением. 2. Нахождение человека, чем выше поднимается он над уровнем моря, тем сильнее становится облучение. 3. Земная радиация, исходит в основном от тех пород полезных ископаемых, которые содержат калий – 40, рубидий – 87, уран – 238, торий – 232.

Внутреннее облучение населения Попадание в организм с пищей, водой, воздухом. Радиоактивный газ радон — он невидимый, не имеющий ни вкуса, ни запаха газ, который в 7, 5 раз тяжелее воздуха. Глиноземы. Отходы промышленности, используемые в строительстве, например, кирпич из красной глины, доменный шлак, зольная При сжигании угля значительная часть его компонентов спекается в шлак, где концентрируются радиоактивные вещества.

При работе с любым источником радиации необходимо принимать меры по радиационной защиты всех людей, могущих попасть в зону действия излучения. Человек с помощью органов чувств не способен обнаружить любые дозы радиоактивного излучения. Для обнаружения ионизирующих излучений, измерения их энергии и других свойств, применяются до зиметры. Измерение радиоактивного излучения

Эквивалентная доза 1 Зв. = 1 Дж/кг Зиверт представляет собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую радиоактивную опасность для организма разных видов ионизирующего излучения.

Эквивалентная доза излучения: Н=Д*К К — коэффициент качества Д – поглощенная доза излучений Поглощенная доза излучений: Д=Е/ m Е – энергия поглощенного тела m – масса тела

Доза излучения поглощение Е ионизирующего излучения к массе вещества В СИ поглощённую дозу излучения выражают в грэях Естественный фон радиации (космические лучи, радиоактивность окружающей среды и человеческого тела) составляет за год дозу излучения около 2*10 -3 Гр Доза излучения 3 -10 Гр, полученная за короткое время, смертельна

Воздействие ионизирующих излучений Любой вид ионизирующих излучений вызывает биологические изменения в организме. Однократное облучение вызывает биологические нарушения, которые зависят от суммарной поглощенной дозы. Так при дозе до 0, 25 Гр. видимых нарушений нет, но уже при 4 – 5 Гр. смертельные случаи составляют 50% от общего числа пострадавших, а при 6 Гр. и более — 100% пострадавших. Основной механизм действия связан с процессами ионизации атомов и молекул живой материи, в частности молекул воды, содержащихся в клетках. Степень воздействия ионизирующих излучений на живой организм зависит от мощности дозы облучения, продолжительности этого воздействия и вида излучения и радионуклида, попавшего внутрь организма.

Механизм действия излучения: происходит ионизация атомов и молекул, что приводит к изменению химической активности клеток. Биологическое действие радиоактивных излучений

В силу того, что при радиоактивном облучении биологическая поражаемость органов тела человека или отдельных систем организма неодинакова, их делят на группы: I (наиболее уязвимая) - все тело, гонады и красный костный мозг (кроветворная система); II - хрусталик глаза, щитовидная железа (эндокринная система), печень, почки, легкие, мышцы, жировая ткань, селезенка, желудочно-кишечный тракт, а также другие органы, которые не вошли в I и III группы; III - кожный покров, костная ткань, кисти, предплечья, стопы и голени.

Чувствительность отдельных органов к радиоактивному излучению Ткани Эквивалентная доза % Костная ткань 0, 03 Щитовидная железа 0, 03 Красный костный мозг 0, 12 Легкие 0, 12 Молочная железа 0, 15 Яичники, семенники 0, 25 Другие ткани 0, 3 Организм в целом

Радиоактивные излучения оказывают сильное биологическое действие на ткани живого организма, заключающееся в ионизации атомов и молекул среды. Биологическое действие радиоактивных излучений

Живая клетка — сложный механизм, не способный продолжать нормальную деятельность даже при малых повреждениях отдельных его участков. Даже слабые излучения могут нанести клеткам существенные повреждения и вызвать опасные заболевания (лучевая болезнь). При большой интенсивности излучения живые организмы погибают. Опасность излучения заключается в том, что они не вызывают никаких болевых ощущений даже при смертельных дозах. Биологическое действие радиоактивных излучений

Биологическое действие радиоактивных излучений Изменения клетки: — Разрушение хромосом — Нарушение способности к делению — Изменение проницаемости клеточных мембран — Разбухание ядер клето к

Облучение может оказывать и определённую пользу Быстроразмножающиеся клетки в раковых опухолях более чувствительны к облучению. На этом основано подавление раковой опухали γ -лучами радиоактивных препаратов, которые для этой цели более эффективны, чем рентгеновские лучи

Наиболее чувствительные к излучению ядра клеток: 1. Клетки костного мозга (нарушается процесс образования крови) 2. Поражение клеток пищеварительного тракта и др. органы. Биологическое действие радиоактивных излучений

Генетические последствия радиации — проявляются в виде генных мутаций, а также изменения числа или структуры хромосом. Доза в 1 Гр, полученная при низком радиационном фоне особями мужского пола (для женщин оценки менее определенны), вызывает появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных перестроек (аберраций) на каждый миллион живых новорожденных.

Радиоактивные отходы РАО Отходы, содержащие радиоактивные изотопы химических элементов и не имеющие практической ценности. Это ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается.

Классификация радиоактивных отходов По агрегатному состоянию: Жидкие Твёрдые Газообразные По составу излучения: α – излучение β — излучение γ — излучение нейтронное излучение По времени жизни: короткоживущие (менее 1 года) среднеживущие (от года до 100 лет) долгоживущие (более 100 лет) По активности: Низкоактивные Среднеактивные Высокоактивные

Авария на Чернобыльской АЭС показала огромную опасность радиоактивных излучений. Все люди должны иметь представление об этой опасности и мерах защиты от неё. 26 апреля 1986 г.

Методы и средства защиты от ионизирующих излучений увеличение расстояния между оператором и источником; сокращение продолжительности работы в поле излучения; экранирование источника излучения; дистанционное управление; использование манипуляторов и роботов; полная автоматизация технологического процесса; использование средств индивидуальной защиты и предупреждение знаком радиационной опасности; постоянный контроль за уровнем излучения и за дозами облучения персонала.

Самый простой метод защиты – это удаление персонала от источника излучения на достаточно большое расстояние. Поэтому все объёмы с радиоактивными препаратами не следует брать руками. Нужно пользоваться специальными щипцами с длинной ручкой. Если удаление от источника излучения на достаточно большое расстояние не возможно. Используют для защиты от излучения преграды из поглощающих материалов.

Реферат

Тема:


План:

Введение

1 Прямое и косвенное действие ионизирующего излучения

2 Воздействие ионизирующего излучения на отдельные органы и организм в целом

3 Мутации

4 Действие больших доз ионизирующих излучений на биологические объекты

5. Два вида облучения организма: внешнее и внутреннее

Заключение

Литература

БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ РАДИАЦИИ

Фактор радиации присутствовал на нашей планете с момента ее образования, и как показали дальнейшие исследования, ионизирующие излучения наряду с другими явлениями физической, химической и биологической природы сопровождали развитие жизни на Земле. Однако, физическое действие радиации начало изучаться только в конце XIX столетия, а ее биологические эффекты на живые организмы - в середине XX. Ионизационные излучения относятся к тем физическим феноменам, которые не ощущаются нашими органами чувств, сотни специалистов, работая с радиацией, получили радиационные ожоги от больших доз облучения и умерли от злокачественных опухолей, вызванных переоблучением.

Тем не менее, сегодня мировая наука знает 6 биологическом воздействии радиации больше, чем о действии любых других факторов физической и биологической природы в окружающей среде.

При изучении действия радиации на живой организм были определены следующие особенности:

· Действие ионизирующих излучений на организм не ощутимо человеком. У людей отсутствует орган чувств, который воспринимал бы ионизирующие излучения. Существует так называемый период мнимого благополучия - инкубационный период проявления действия ионизирующего излучения. Продолжительность его сокращается при облучении в больших дозах.

· Действие от малых доз может суммироваться или накапливаться.

· Излучение действует не только на данный живой организм, но и на его потомство - это так называемый генетический эффект.

· Различные органы живого организма имеют свою чувствительность к облучению. При ежедневном воздействии дозы 0,002-0,005 Гр уже наступают изменения в крови.

· Не каждый организм в целом одинаково воспринимает облучение.

· Облучение зависит от частоты. Одноразовое облучение в большой дозе вызывает более глубокие последствия, чем фракционированное.


1. ПРЯМОЕ И КОСВЕННОЕ ДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

Радиоволны, световые волны, тепловая энергия солнца - все это разновидности излучений. Однако, излучение будет ионизирующим, если оно способно разрывать химические связи молекул, из которых состоят ткани живого организма, и, как следствие, вызывать биологические изменения. Действие ионизирующего излучения происходит на атомном или молекулярном уровне, независимо от того, подвергаемся ли мы внешнему облучению, или получаем радиоактивные вещества с пищей и водой, что нарушает баланс биологических процессов в организме и приводит к неблагоприятным последствиям. Биологические эффекты влияния" радиации на организм человека обусловлены взаимодействием энергии излучения с биологической тканью. Энергию непосредственно передаваемую атомам и молекулам биотканей называют прямым действием радиации. Некоторые клетки из-за неравномерности распределения энергии излучения будут значительно повреждены.

Одним из прямых эффектов является канцерогенез или развитие онкологических заболеваний. Раковая опухоль возникает, когда соматическая клетка выходит из под контроля организма и начинает активно делиться. Первопричиной этого являются нарушения в генетическом механизме, называемые мутациями. При делении раковая клетка производит только раковые клетки. Одним из наиболее чувствительных органов к воздействию радиации является щитовидная железа. Поэтому биоткань этого органа наиболее уязвима в плане развития рака. Не менее восприимчива к влиянию излучения кровь. Лейкоз или рак крови - один из распространенных эффектов прямого воздействия радиации. Заряженные частицы проникают в ткани организма, теряют свою энергию вследствие электрических взаимодействий с электронами атомов Электрическое взаимодействие сопровождает процесс ионизации (вырывание электрона из нейтрального атома)

Физико-химические изменения сопровождают возникновение в организме чрезвычайно опасных "свободных радикалов".

Кроме прямого ионизирующего облучения выделяют также косвенное или непрямое действие, связанное с радиолизом воды. При радиолизе возникают свободные радикалы - определенные атомы или группы атомов, обладающие высокой химической активностью. Основным признаком свободных радикалов являются избыточные или неспаренные электроны. Такие электроны легко смещаются со своих орбит и могут активно участвовать в химической реакции. Важно то, что весьма незначительные внешние изменения могут привести к значительным изменениям биохимических свойств клеток. К примеру, если обычная молекула кислорода захватит свободный электрон, то она превращается в высокоактивный свободный радикал - супероксид. Кроме того, имеются и такие активные соединения, как перекись водорода, гидрооксил и атомарный кислород. Большая часть свободных радикалов нейтральна, но некоторые из них могут иметь положительный или отрицательный заряд.

Если число свободных радикалов мало, то организм имеет возможность их контролировать. Если же их становится слишком много, то нарушается работа защитных систем, жизнедеятельность отдельных функций организма. Повреждения, вызванные свободными радикалами, быстро увеличиваются по принципу цепной реакции. Попадая в клетки, они нарушают баланс кальция и кодирование генетической информации. Такие явления могут привести к сбоям в синтезе белков, что является жизненно важной функцией всего организма, т.к. неполноценные белки нарушают работу иммунной системы. Основные фильтры иммунной системы - лимфатические узлы работают в перенапряженном режиме и не успевают их отделять. Таким образом, ослабляются защитные барьеры и в организме создаются благоприятные условия для размножения вирусов микробов и раковых клеток.

Свободные радикалы, вызывающие химические реакции, вовлекают в этот процесс многие молекулы, не затронутые излучением. Поэтому производимый излучением эффект обусловлен не только количеством поглощенной энергии, а и той формой, в которой эта энергия передается. Никакой другой вид энергии, поглощенный биообъектом в том же количестве, не приводит к таким изменениям, какие вызывает ионизирующее излучение. Однако природа этого явления такова, что все процессы, в том числе и биологические, уравновешиваются. Химические изменения возникают в результате взаимодействия свободных радикалов друг с другом или со "здоровыми" молекулами Биохимические изменения происходят как в момент облучения, так и на протяжении многих лет, что приводит к гибели клеток.

Наш организм в противовес описанным выше процессам вырабатывает особые вещества, которые являются своего рода "чистильщиками".

Эти вещества (ферменты) в организме способны захватывать свободные электроны, не превращаясь при этом в свободные радикалы. В нормальном состоянии в организме поддерживается баланс между появлением свободных радикалов и ферментами. Ионизирующее излучение нарушает это равновесие, стимулирует процессы роста свободных радикалов и приводит к негативным последствиям. Активизировать процессы поглощения свободных радикалов можно, включив в рацион питания антиокислители, витамины А, Е, С или препараты, содержащие селен. Эти вещества обезвреживают свободные радикалы, поглощая их в больших количествах.

2. ВОЗДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ОТДЕЛЬНЫЕ ОРГАНЫ И ОРГАНИЗМ В ЦЕЛОМ

В структуре организма можно выделить два класса систем: управляющую (нервная, эндокринная, иммунная) и жизнеобеспечивающую (дыхательная, сердечно-сосудистая, пищеварительная). Все основные обменные (метаболические) процессы и каталитические (ферментативные) реакции происходят на клеточном и молекулярном уровнях. Уровни организации организма функционируют в тесном взаимодействии и взаимовлиянии со стороны управляющих систем. Большинство естественных факторов воздействуют сначала на вышестоящие уровни, затем через определенные органы и ткани - на клеточно-молекулярные уровни. После этого начинается ответная фаза, сопровождающаяся коррективами на всех уровнях.

Взаимодействие радиации с организмом начинается с молекулярного уровня. Прямое воздействие ионизирующего излучения, поэтому является более специфичным. Повышение уровня окислителей характерно и для других воздействий. Известно, что различные симптомы (температура, головная боль и др.) встречаются при многих болезнях и причины их различны. Это затрудняет установление диагноза. Поэтому, если в результате вредного воздействия на организм радиации не возникает определенной болезни, установить причину более отдаленных последствий трудно, поскольку они теряют свою специфичность.

Радиочувствительность различных тканей организма зависит от биосинтетических процессов и связанной с ними ферментативной активностью. Поэтому наиболее высокой радиопора-жаемостью отличаются клетки костного мозга, лимфатических узлов, половые клетки. Кровеносная система и красный костный мозг наиболее уязвимы при облучении и теряют способность нормально функционировать уже при дозах 0,5-1 Гр. Однако, они обладают способностью восстанавливаться и если не все клетки поражены, кровеносная система может восстановить свои функции. Репродуктивные органы, например, семенники, так же отличаются повышенной радиочувствительностью. Облучение свыше 2 Гр приводит к постоянной стерильности. Только через много лет они могут полноценно функционировать. Яичники менее чувствительны, по крайней мере, у взрослых женщин. Но однократная доза более 3 Гр все же приводит к их стерильности, хотя большие дозы при неоднократном облучении не сказываются на способности к деторождению.

Очень восприимчив к излучению хрусталик глаза. Погибая, клетки хрусталика становятся непрозрачными, разрастаясь, приводят к катаракте, а затем и к полной слепоте. Это может произойти при дозах около 2 Гр.

Радиочувствительность организма зависит от его возраста. Небольшие дозы при облучении детей могут замедлить или вовсе остановить у них рост костей. Чем меньше возраст ребенка, тем сильнее подавляется рост скелета. Облучение мозга ребенка может вызвать изменения в его характере, привести к потере памяти. Кости и мозг взрослого человека способны выдержать гораздо большие дозы. Относительно большие дозы способны выдерживать большинство органов. Почки выдерживают дозу около 20 Гр, полученную в течение месяца, печень - около 40 Гр, мочевой пузырь - 50 Гр, а зрелая хрящевая ткань - до 70 Гр. Чем моложе организм, тем при прочих равных условиях, он более чувствителен к воздействию радиации.

Видовая радиочувствительность возрастает по мере усложнения организма. Это объясняется тем, что в сложных организмах больше слабых звеньев, вызывающих цепные реакции выживания. Этому способствуют и более сложные системы управления (нервная, иммунная), которые частично или полностью отсутствуют в более примитивных особях. Для микроорганизмов дозы, вызывающие 50% смертности, составляют тысячи Гр, для птиц - десятки, а для высокоорганизованных млекопитающих - единицы (рис. 2.15).

3. МУТАЦИИ

Каждая клетка организма содержит молекулу ДНК, которая несет информацию для правильного воспроизведения новых клеток.

ДНК - это дезоксирибонуклеиновая кислота, состоящая из длинных, закругленных молекул в виде двойной спирали. Функция ее заключается в обеспечении синтеза большинства белковых молекул из которых состоят аминокислоты. Цепочка молекулы ДНК состоит из отдельных участков, которые кодируются специальными белками, образуя так называемый ген человека.

Радиация может либо убить клетку, либо исказить информацию в ДНК так, что со временем появятся дефектные клетки. Изменение генетического кода клетки называют мутацией. Если мутация происходит в яйцеклетке спермы, последствия могут быть ощутимы и в далеком будущем, т.к. при оплодотворении образуются 23 пары хромосом, каждая из которых состоит из сложного вещества, называемого дезоксирибонуклииновой кислотой. Поэтому мутация, возникающая в половой клетке, называется генетической мутацией и может передаваться последующим поколениям.

По мнению Э. Дж. Холла, такие нарушения можно отнести к двум основным типам: хромосомные аберрации, включающие изменение числа или структуры хромосом, и мутации в самих генах. Генные мутации подразделяются далее на доминантные (которые проявляются сразу в первом поколении) и рецессивные (которые могут проявиться в том случае, если у обоих родителей мутантным является один и тот же ген). Такие мутации могут не проявиться на протяжении многих поколений или не обнаружиться вообще. Мутация в самотической клетке будет оказывать влияние только на сам индивид. Вызванные радиацией мутации не отличаются от естественных, однако при этом увеличивается сфера вредного воздействия.

Описанные рассуждения основаны лишь на лабораторных исследованиях животных. Прямых доказательств радиационных мутаций у человека пока нет, т.к. полное выявление всех наследственных дефектов происходит лишь на протяжении многих поколений.

Однако, как подчеркивает Джон Гофман, недооценка роли хромосомных нарушений, основанная на утверждении "их значение нам неизвестно", является классическим примером решений, принимаемых невежеством. Допустимые дозы облучения были установлены еще задолго до появления методов, позволяющих установить те печальные последствия, к которым они могут привести ничего не подозревающих людей и их потомков.

4. ДЕЙСТВИЕ БОЛЬШИХ ДОЗ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА БИОЛОГИЧЕСКИЕ ОБЪЕКТЫ

Живой организм очень чувствителен к действию ионизирующей радиации. Чем выше на эволюционной лестнице стоит живой организм, тем он более радиочувствителен. Радиочувствительность - многосторонняя характеристика. "Выживаемость" клетки после облучения зависит одновременно от ряда причин: от объема генетического материала, активности энергообеспечивающих систем, соотношения ферментов, интенсивности образования свободных радикалов Н и ОН.

При облучении сложных биологических организмов следует учитывать процессы, происходящие на уровне взаимосвязи органов и тканей. Радиочувствительность у различных организмов варьируется довольно широко (рис. 2.16).

Организм человека, как совершенная природная система, еще более чувствителен к радиации. Если человек перенес общее облучение дозой 100-200 рад, то у него спустя несколько дней появятся признаки лучевой болезни в легкой форме. Ее признаком может служить уменьшение числа белых кровяных клеток, которое устанавливается при анализе крови. Субъективным показателем для человека является возможная рвота в первые сутки после облучения.

Средняя степень тяжести лучевой болезни наблюдается у лиц, подвергшихся воздействию излучения в 250-400 рад. У них резко снижается содержание лейкоцитов (белых кровяных клеток) в крови, наблюдается тошнота и рвота, появляются подкожные кровоизлияния. Летальный исход наблюдается у 20% облученных спустя 2-6 недель после облучения.

При облучении дозой 400-600 рад развивается тяжелая форма лучевой болезни. Появляются многочисленные подкожные кровотечения, количество лейкоцитов в крови значительно уменьшается. Летальный исход болезни 50% .

Очень тяжелая форма лучевой болезни возникает при облучении дозой выше 600 рад. Лейкоциты в крови полностью исчезают. Смерть наступает в 100% случаев.

Описанные выше последствия радиационного облучения характерны для случаев, когда медпомощь отсутствует.

Для лечения облученного организма современная медицина широко применяет такие методы, как кровезамещение, пересадка костного мозга, введение антибиотиков, а также другие методы интенсивной терапии. При таком лечении возможно исключить смертельный исход даже при облучении дозой до 1000 рад. Энергия, излучаемая радиоактивными веществами, поглощается окружающей средой, в том числе и биологическими объектами. В результате воздействия ионизирующего излучения на организм человека в тканях могут происходить сложные физические, химические и биохимические процессы.

Ионизирующее воздействие нарушает в первую очередь нормальное течение биохимических процессов и обмен веществ. В зависимости от величины поглощенной дозы излучения и индивидуальных особенностей организма вызванные изменения могут быть обратимыми или необратимыми. При небольших дозах пораженная ткань восстанавливает свою функциональную деятельность. Большие дозы при длительном воздействии могут вызвать необратимое поражение отдельных органов или всего организма. Любой вид ионизирующих излучений вызывает биологические изменения в организме как при внешнем (источник находится вне организма), так и при внутреннем облучении (радиоактивные вещества попадают внутрь организма, например, с пищей или ингаляционным путем). Рассмотрим действие ионизирующего излучения, когда источник облучения находится вне организма.

Биологических эффект ионизирующего излучения в данном случае зависит от суммарной дозы и времени воздействия излучения, его вида, размеров облучаемой поверхности и индивидуальных особенностей организма. При однократном облучении всего тела человека возможны биологические нарушения в зависимости от суммарной поглощенной дозы излучения.

При облучении дозами, в 100-1000 раз превышающими смертельную дозу, человек может погибнуть во время облучения. Причем, поглощенная доза излучения, вызывающая поражение отдельных частей тела, превышает смертельную поглощенную дозу облучения всего тела. Смертельные поглощенные дозы для отдельных частей тела следующие: голова - 20 Гр, нижняя часть живота - 30 Гр, верхняя часть живота - 50 Гр, грудная клетка - 100 Гр, конечности - 200 Гр.

Степень чувствительности различных тканей к облучению неодинакова. Если рассматривать ткани органов в порядке уменьшения их чувствительности к действию облучения, то получим следующую последовательность: лимфатическая ткань, лимфатические узлы, селезенка, зобная железа, костный мозг, зародышевые клетки. Большая чувствительность кроветворных органов к радиации лежит в основе определения характера лучевой болезни.

При однократном облучении всего тела человека поглощенной дозой 0,5 Гр через сутки после облучения может резко сократиться число лимфоцитов. Уменьшается также и количество эритроцитов (красных кровяных телец) по истечении двух недель после облучения. У здорового человека насчитывается порядка 10 4 красных кровяных телец, причем ежедневно вое-производится 10 .У больных лучевой болезнью такое соотношение нарушается и в результате организм погибает.

Важным фактором при воздействии ионизирующего излучения на организм является время облучения. С увеличением мощности дозы поражающее действие излучения возрастает. Чем более дробно излучение по времени, тем меньше его поражающее действие (рис. 2.17).

Внешнее облучение альфа-, а также бета-частицами менее опасно. Они имеют небольшой пробег в ткани и не достигают кроветворных и других внутренних органов. При внешнем облучении необходимо учитывать гамма- и нейтронное облучение, которые проникают в ткань на большую глубину и разрушают ее, о чем более подробно рассказывалось выше.

5. ДВА ВИДА ОБЛУЧЕНИЯ ОРГАНИЗМА: ВНЕШНЕЕ И ВНУТРЕННЕЕ

Ионизирующее излучение может двумя способами оказывать воздействие на человека. Первый способ - внешнее облучение от источника, расположенного вне организма, которое в основном зависит от радиационного фона местности на которой проживает человек или от других внешних факторов. Второй - внутреннее облучение, обусловленное поступлением внутрь организма радиоактивного вещества, главным образом с продуктами питания.

Продукты питания, не соответствующие радиационным нормам, имеют повышенное содержание радионуклидов, инкорпорируются с пищей и становятся источником излучения непосредственно внутри организма.

Большую опасность представляют продукты питания и воздух, содержащие изотопы плутония и америция, которые обладают высокой альфа активностью. Плутоний, выпавший в результате Чернобыльской катастрофы, является самым опасным канцерогенным веществом. Альфа излучение имеет высокую степень ионизации и, следовательно, большую поражающую способность для биологических тканей.

Попадание плутония, а также америция через дыхательные пути в организм человека вызывает онкологию легочных заболеваний. Однако следует учесть, что отношение общего количества плутония и его эквивалентов америция, кюрия к общему количеству плутония, попавшего в организм ингаляционным путем незначительно. Как установил Беннетт, при анализе ядерных испытаний в атмосфере, на территории США соотношение выпадения и ингаляции равно 2,4 млн. к 1, то есть подавляющее большинство альфа-содержащих радионуклидов от испытаний ядерного оружия ушли в землю не оказав влияния на человека. В выбросах Чернобыльского следа наблюдались также частицы ядерного топлива, так называемые горячие частицы размером около 0,1 микрона. Эти частицы также могут проникать ингаляционным путем в легкие и представлять серьезную опасность.

Внешнее и внутреннее облучения требуют различные меры предосторожности, которые должны быть приняты против опасного действия радиации.

Внешнее облучение в основном создается гамма содержащими радионуклидами, а также рентгеновским излучением. Его поражающая способность зависит от:

а) энергии излучения;

б) продолжительности действия излучения;

в) расстояния от источника излучения до объекта;

г) защитных мероприятий.

Между продолжительностью времени облучения и поглощенной дозой существует линейная зависимость, а влияние расстояния на результат радиационного воздействия имеет квадратичную зависимость.

Для защитных мероприятий от внешнего облучения используются в основном свинцовые и бетонные защитные экраны на пути излучения. Эффективность применения материала в качестве экрана для защиты от проникновения рентгеновских или гамма-лучей зависит от плотности материала, а также от концентрации содержащихся в нем электронов.

Если от внешнего облучения можно защититься специальными экранами или другими действиями, то с внутренним облучением это сделать не представляется возможным.

Различают три возможных пути, по которым радионуклиды способны попасть внутрь организма:

а) с пищей;

б) через дыхательные пути с воздухом;

в) через повреждения на коже.

Следует отметить, что радиоактивные элементы плутоний и америций проникают в организм в основном с пищей или при дыхании и очень редко через повреждения кожи.

Как отмечает Дж. Холл, органы человека реагируют на поступившие в организм вещества исходя исключительно из химической природы последних, вне зависимости от того, являются они радиоактивными или нет. Химические элементы такие как натрий и калий, входят в состав всех клеток организма. Следовательно, их радиоактивная форма, введенная в организм, будет также распределена по всему организму. Другие химические элементы имеют склонность накапливаться в отдельных органах, как это происходит с радиоактивным йодом в щитовидной железе или кальцием в костной ткани.

Проникновение радиоактивных веществ с пищей внутрь организма существенно зависит от их химического взаимодействия. Установлено, что хлорированная вода увеличивает растворимость плутония, и как следствие инкорпорацию его во внутренние органы.

После того, как радиоактивное вещество попало в организм, следует учитывать величину энергии и вид излучения, физический и биологический период полураспада радионуклида. Биологическим периодом полувыведения называют время, которое необходимо для выведения из организма половины радиоактивного вещества. Некоторые радионуклиды выводятся из организма быстро, и поэтому не успевают нанести большого вреда, в то время как другие сохраняются в организме в течение значительного времени.

Период полувыведения радионуклидов, существенно зависит от физического состояния человека, его возраста и других факторов. Сочетание физического периода полураспада с биологическим, называется эффективным периодом полураспада - наиболее важным в определении суммарной величины излучения. Орган, наиболее подверженный действию радиоактивного вещества называют критическим. Для различных критических органов разработаны нормативы, определяющие допустимое содержание каждого радиоактивного элемента. На основании этих данных созданы документы, регламентирующие допустимые концентрации радиоактивных веществ в атмосферном воздухе, питьевой воде, продуктах питания. В Беларуси в связи с аварией на ЧАЭС действуют Республиканские допустимые уровни содержания радионуклидов цезия и стронция в пищевых продуктах и питьевой воде (РДУ-92). В Гомельской области введены по некоторым пищевым продуктам питания, например детского, более жесткие нормативы. С учетом всех вышеперечисленных факторов и нормативов, подчеркнем, что среднегодовая эффективная эквивалентная доза облучения человека не должна превышать 1 мЗв в год.

ЛИТЕРАТУРА:

1. Савенко В.С. Радиоэкология. - Мн.: Дизайн ПРО, 1997.

2. М.М. Ткаченко, “Радіологія (променева діагностика та променева терапія)”

3. А.В. ШУМАКОВ Краткое пособие по радиационной медицине Луганск -2006

4. Бекман И.Н. Лекции по ядерной медицине

5. Л.Д. Линденбратен, Л.Б. Наумов Медицинская рентгенология. М. Медицина 1984

6. П.Д. Хазов, М.Ю. Петрова. Основы медицинской радиологии. Рязань,2005

7. П.Д. Хазов. Лучевая диагностика. Цикл лекций. Рязань. 2006

« Биологическое действие радиации на человека»

Прошло более двадцати столетий, и перед человечеством вновь встала подобная дилемма: атом и радиация, которую он испускает, могут стать для нас источником благоденствия или гибели, угрозой или надеждой, лучшей или худшей вещью.

Цели работы:

1) Выявить воздействия радиации на биологическую среду.

2) Выявить воздействия радиации на человека.

3) Определить меры защиты от радиационного фона.

Задачи:

1) Изучить литературные источники.

2) С помощью полученной информации определить плюсы и минусы радиации.

3) Посетить КГТУ для изучения прибора, определяющего радиационный фон.

4) Определить, как радиационный фон влияет на окружающую среду и человека.

5) Выяснить меры защиты от радиационного облучения.

В нашем мире существует множество мест и предметов, от которых мы получаем облучение. Например, от телефона. Наш мобильный излучает электромагнитные волны, которые подвергают наш организм облучению. Так же мы облучаемся при воздействии с не заземленным компьютером. Когда мы делаем флюрографию, мы тоже подвергаемся к малому излучению. Есть еще множество вещей и факторов, благодаря которым мы подвергаемся излучению.

Источники радиации:

Естественные: Космические, солнечные лучи; газ радон, радиоактивные изотопы в горных породах (уран 238,торий 232,калий 40, рубидий 87); внутреннее облучение человека за счёт радионуклидов (с водой и пищей). Созданные человеком: Медицинские процедуры и методы лечения, атомная энергетика , ядерные взрывы, мусорные свалки, строительные материалы, сжигаемое топливо, бытовая техника .

Использование радиации:

Радиация используется в медицине в диагностических целях и для лечения. Одним из самых распространенных медицинских приборов является рентгеновский аппарат. Исследования в области - радиационной генетики и радиационной селекции дали около сотни новых разновидностей высокоурожайных культурных растений, устойчивых к различным заболеваниям.

Последствия воздействия радиации :

Лучевая болезнь, бесплодие , генетические мутации, поражения органов зрения, поражения нервной системы, ускоренное старение организма, нарушение психического и умственного развития, раковые заболевания.

Меры безопасности:

·не выходим из помещений, 2-3 раза в день делаем влажную (именно влажную!) уборку;

·как можно чаще принимаем душ (особенно после выхода на улицу), стираем вещи. Регулярное промывание физраствором слизистых носа, глаз и глотки не столь важно, поскольку при дыхании поступает значительно большее количество радионуклидов;

·чтобы оградить организм от радиоактивного йода-131, достаточно смазать небольшой участок кожи медицинским йодом. По мнению врачей, эта нехитрый способ защиты действует месяц;

·если Вам приходится выходить на улицу, лучше надевать светлую одежду, желательно хлопчатобумажную и влажную. На голову рекомендуют надевать капюшон и бейсболку одновременно;

·в первые несколько дней нужно опасаться радиоактивных осадков, то есть «затаиться и отсидеться».

Наши исследования в калининградском центре атома.

Для нашего опыта мы взвесили людей разной весовой категории. И наш опыт показал, что чем больше вес человека, тем выше его нормальный радиационный фон.

Радиационный фон

Дози́метр - прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени. Само измерение

называется дозиметрией. В нашем случае дозиметр представляет собой напольные весы с компьютером. В результате проведенных исследований мы выявили плюсы и минусы радиации:

Плюсы:

использование в медицине (рентгенодиагностика, лучевая терапия и т. п.);

радиационная генетика и селекция;

радиоактивный громоотвод;

стерилизация и сохранение пищевых продуктов;

восстановление фотографий;

использование ионизирующих излучений в промышленности.

Минусы:

облучение; радиоактивный мусор; опасность «мирной» радиации;

генетические последствия облучения.

Вывод: В результате проведенных исследований мы выяснили, что чем больше вес человека, тем выше его нормальный радиационный фон и что он не зависит от возраста человека.

Радиация может повреждать клетки. Защита организма справляется с этим, пока дозы облучения не превысят природный фон в сотни и тысячи раз. Более высокие дозы ведут к острой лучевой болезни и увеличивают на несколько процентов вероятность заболевания раком. Дозы в десятки тысяч раз выше фона смертельны. Таких доз в повседневной жизни не бывает.

Гибель и мутации клеток нашего тела - еще одно естественное явление, сопровождающее нашу жизнь. В организме, состоящем примерно из 60 триллионов клеток, клетки стареют и мутируют по естественным причинам. Ежедневно гибнет несколько миллионов клеток. Множество физических, химических и биологических агентов, включая природную радиацию, также «портят» клетки, но в обычных ситуациях организм легко справляется с этим.

По сравнению с другими повреждающими факторами ионизирующее излучение (радиация) изучено лучше всего. Как радиация действует на клетки? При делении атомных ядер высвобождается большая энергия, способная отрывать электроны от атомов окружающего вещества. Этот процесс называется ионизаций, а несущее энергию электромагнитное излучение - ионизирующим. Ионизированный атом меняет свои физические и химические свойства. Следовательно, изменяются свойства молекулы, в которую он входит. Чем выше уровень радиации, тем больше число актов ионизации, тем больше будет поврежденных клеток.

Для живых клеток наиболее опасны изменения в молекуле ДНК. Поврежденную ДНК клетка может «починить». В противном случае она погибнет или даст измененное (мутировавшее) потомство.

Погибшие клетки организм замещает новыми в течение дней или недель, а клетки-мутанты эффективно выбраковывает. Этим занимается иммунная система. Но иногда защитные системы дают сбой. Результатом в отдаленном времени может быть рак или генетические изменения у потомков, в зависимости от типа поврежденной клетки (обычная или половая клетка). Ни тот, ни другой исход не предопределен заранее, но оба имеют некоторую вероятность. Самопроизвольные случаи рака называют спонтанными. Если установлена ответственность того или иного агента за возникновение рака, говорят, что рак был индуцированным.

Если доза облучения превышает природный фон в сотни раз , это становится заметным для организма. Важно не то, что это радиация, а то, что защитным системам организма труднее справляться с возросшим числом повреждений. Из-за участившихся сбоев возникает дополнительные «радиационные» раки. Их количество может составлять несколько процентов от числа спонтанных раков.

Очень большие дозы, это - в тысячи раз выше фона. При таких дозах основные трудности организма связаны не с измененными клетками, а с быстрой гибелью важных для организма тканей. Организм не справляется с восстановлением нормального функционирования самых уязвимых органов, в первую очередь, красного костного мозга, который относится к системе кроветворения. Появляются признаки острого недомогания - острая лучевая болезнь. Если радиация не убьет сразу все клетки костного мозга, организм со временем восстановится. Выздоровление после лучевой болезни занимает не один месяц, но дальше человек живет нормальной жизнью.

Вылечившись после лучевой болезни, люди несколько чаще, чем их необлученные сверстники болеют раком. Насколько чаще? На несколько процентов.

Это следует из наблюдений за пациентами в разных странах мира, прошедшими курс радиотерапии и получившими достаточно большие дозы облучения, за сотрудниками первых ядерных предприятий, на которых еще не было надежных систем радиационной защиты, а также за пережившими атомную бомбардировку японцами, и чернобыльскими ликвидаторами. Среди перечисленных групп самые высокие дозы были у жителей Хиросимы и Нагасаки. За 60 лет наблюдений у 86,5 тысяч человек с дозами в 100 и более раз выше природного фона было на 420 случаев смертельного рака больше, чем в контрольной группе (увеличение примерно на 10 %). В отличие от симптомов острой лучевой болезни, которые проявляются через часы или дни, рак возникает не сразу, может быть, через 5, 10 или 20 лет. Для разных локализаций рака скрытый период разный. Быстрее всего, в первые пять лет, развивается лейкоз (рак крови). Именно это заболевание считается индикатором радиационного воздействия при дозах облучения в сотни и тысячи раз выше фона .

Почему рак возникает не сразу? Чтобы клетка с поврежденной ДНК стала раковой, с ней должна произойти целая цепь редких событий. После каждой новой трансформации ей снова нужно «проскочить» защитный барьер. Если иммунная защита эффективна, даже сильно облученный человек может не заболеть раком. А если заболеет, то будет вылечен.

Теоретически кроме рака могут быть и другие последствия облучения в высоких дозах.

Если радиация повредила молекулу ДНК в яйцеклетке или в сперматозоиде, есть риск, что повреждение будут передано по наследству. Этот риск может дать небольшую добавку к спонтанным наследственным нарушениям, Известно, что самопроизвольно возникающие генетические дефекты, начиная с дальтонизма и кончая синдромом Дауна, встречаются у 10 % новорожденных. Для человека радиационная добавка к спонтанным генетическим нарушениям очень мала. Даже у переживших бомбардировку японцев с высокими дозами облучения, вопреки ожиданиям ученых, выявить ее не удалось. Не было добавочных радиационно-индуцированных дефектов после аварии на комбинате «Маяк» в 1957 году, не выявлено и после Чернобыля.

Радиационные аварии в СССР и РФ с клинически значимыми последствиями: 1949-2005

Вид аварии
Количество
аварий
Число пострадавших
Всего в т.ч. умерли
Радиоизотопные установки и их источники 92 170 16
Рентгеновские установки и ускорители 39 43 -
Реакторные инциденты и потеря контроля над критичностью 33 82 13
Случаи с местными лучевыми поражениями на ПО «Маяк» в 1949/56 гг. 168 168 -
Аварии на атомных подводных лодках 4 133 12
Другие инциденты 12 17 2
Чернобыльская авария 1 134 28
ИТОГО
176 747 71

Последствия облучения в зависимости от дозы

Люди, погибшие от облучения в Хиросиме и Нагасаки, а также в Чернобыле, получили дозы в десятки тысяч раз выше фона. При таких дозах организм уже не справляется с огромным числом погибших клеток, и человек умирает в течение дней или недель. В Хиросиме и Нагасаки в результате атомных бомбардировок погибли 210 тыс. человек. Это суммарное число потерь от действия ударной волны, разрушения зданий и сооружений, тепловых ожогов и радиации. При аварии на Чернобыльской АЭС в первые сутки около 300 сотрудников станции и пожарных получили очень высокие дозы. 28 спасти не удалось, но 272 человека врачи вылечили.

наши тела вместе с воздухом.

естественной радиации.

облучения.

проводилось.

По материалам staynatural.ru

Радиация вокруг нас. Она естественна для окружающей среды нашей

планеты - радиация существовала на Земле с самого её зарождения.

Следовательно, жизнь развивалась в условиях постоянной ионизирующей

радиации на планете. Излучение приходит из космоса, от земли, а также

вырабатывается внутри наших тел. Радиация присутствует в воздухе,

которым мы дышим, в еде и воде, а также в строительных материалах,

которые мы используем для наших домов. Некоторые продукты содержат

больше радиации, чем другие (например, бананы и бразильские орехи). В

домах из камня и кирпича уровень радиации больше, чем в строениях из

дерева и тростника. Гранит обладает наиболее высоким уровнем радиации

среди строительных материалов.

Уровень естественной радиации на планете варьируется от региона к

региону. Он зависит от типа местности (горные регионы получают больше

радиации из космоса), а также от типа почвы (в местах зарождения урана

уровень радиации намного больше). Большая часть излучения для людей

происходит от радона - газа, образуемого в коре Земли, который попадает в

наши тела вместе с воздухом.

Среднестатистический житель планеты получает половину облучения из

природных источников. За вторую половину обычно ответственны медицинские

обследования (рентген и др.). Из естественных источников мы обычно

получаем около 310 мили Р. Обычно, две трети этой радиации излучают газы

радон и торон. Оставшаяся треть приходит из космоса, от земли и от

наших собственных тел. При этом, до настоящего момента ученые не

обнаружили никакого потенциального негативного влияния естественной

радиации на человека и его здоровье.

Человек получает также небольшую дозу искусственно созданного

излучения (от рентгенов, техники, антенн и т.д.), которая обычно не

превышает 310милиР. Компьютерная томография, например, дарит нам дозу

около 150 милиР. Процедуры вроде рентгена и флюорографии дают еще

где-то 150 милиР. Вдобавок, определенным уровнем излучения обладают

некоторые продукты: табак, удобрения, сварочные аппараты, указатели

«Выход», светящиеся в темноте предметы, дымовые детекторы. Именно

поэтому довольно сложно определить точный уровень облучения в год для

отдельного человека: это зависит от личных привычек, работы, места

жительства и т.д. Хотя существуют различия между естественной и

искусственно созданной радиацией, оба типа одинаково влияют на человека.

Биологические влияние радиации на человека

Мы определяет биологическое влияние радиации её воздействием на живую

клетку. В случае несильного облучения, биологическое влияние столь

мало, что часто его просто невозможно определить. У человеческого тела

есть определенные защитные механизмы, как против радиации, так и против

химических канцерогенов. Следовательно, биологическое влияние радиации

на живую клетку можно свести к трем вариантам: (1) поврежденная клетка

восстанавливается сама, останавливая негативные последствия. (2) клетка

умирает, как умирают миллионы клеток каждый день, и её замещает новая в

ходе естественных биологических процессов. (3) клетка восстанавливается

неправильно, что приводит к биофизической вариации.

Связь между радиацией и развитием рака наблюдалась, в основном, при

высоком уровне облучения (например, при разрыве атомной бомбы в Японии,

или при прохождении определенной терапии, предусматривающей сильное

облучение). Рак, связанный с высоким облучением (больше 50,000 милиР),

включает лейкемию, рак груди, мочевого пузыря, толстой кишки, печени,

легких, пищевода, яичек и желудка. Научная литература также предполагает

связь между ионизирующей радиацией и раком предстательной железы,

полости носа, глотки и гортани, а также поджелудочной железы. Период

между облучением и непосредственным развитием рака называется латентным и

может продолжаться несколько лет. Рак, возникающий от облучения, нельзя

отличить от заболевания, возникшего по другим причинам. Именно поэтому,

Национальный институт раковых заболеваний США указывает на то, что и

другие привычки и факторы (курение, потребление алкогольных напитков и

диета) существенно влияю на развитие тех же самых заболеваний.

Хотя сильное облучение связано с раком, на данный момент еще нет

доказательств того, что низкие дозы радиации (менее 10,000 милиР)

способны вызвать развитие раковых заболеваний. Люди, проживающие в

регионах с высоким уровнем естественной радиации, не более подвержены

этим заболеваниям, чем жители регионов с более низким уровнем

естественной радиации.

Тем не менее, органы по защите от радиации продолжают действовать на

основе предположения, что любое количество радиации способно привести к

раковым заболеваниям, при этом, чем выше доза облучения, тем вероятнее

развитие рака. Данная гипотеза сейчас воспринимается с сомнением и

считается несколько преувеличенной.

Сильное облучение имеет тенденцию убивать клетки, в то время как

низкое - повреждать их и изменять генетический год (ДНК) облученной

клетки. Сильное облучение способно убить так много клеток, что это

приводит к немедленному поражению тканей и органов. В этом случае, тело

реагирует на аварийную ситуацию - эта реакция называется острым

синдромом облучения. Чем выше доза радиации, тем быстрее проявляется

воздействие, и тем вероятнее летальный исход. Этот синдром наблюдался у

многих выживших после разрыва ядерной бомбы в 1945, а также у работников

атомной станции Чернобыль в 1986 году. Около 134 работников станции и

пожарных, которые старались потушить пламя, подверглись мощнейшему

излучению (80,000 -1,600,000 милиР). 28 из них умерли в течении 3-х

месяцев после аварии. Двое умерли в течении 2-х дней от ожогов и

облучения.

Радиация по-разному влияет на людей. Именно поэтому, смертельную дозу

облучения установить весьма трудно. Тем не менее, считается, что

половина населения Земли умерла бы в течении 30 дней после облучения в

350,000 - 500,000 милиР, продолжающегося от нескольких минут до

нескольких часов. Летальный исход и его срок в данном случае зависит от

состояния здоровья человека до облучения и качества медицинского

обслуживания, полученного после. Тем не менее, летальный исход возможен

только при облучении всего тела. При облучении отдельных его частей,

результаты будут менее драматичными - например, ожоги кожи.

Низкие дозы радиации (менее 10,000 милиР), продолжающиеся на

протяжении длительного периода времени не вызывают немедленного

поражения отдельных органов. Воздействие несильного, но длительного

облучения проявляется на клеточном уровне. Поэтому изменения в теле

человека могут проходить скрыто на протяжении десятков лет (от 5 до 20

Изменения на генетическом уровне и развитие рака - это основные

риски, связанные с радиоактивным облучением. Вероятность развития рака

после облучения в 5 раз превышает вероятность генетической мутации. К

генетическим эффектам относится изменение репродуктивных клеток, которое

передается к детям. Подобная мутация может проявиться у первого

поколения потомков, или через несколько поколений, в зависимости от

того, являются ли мутировавшие гены доминантными или рецессивными.

Хотя передача мутировавших ген была доказана в лабораторных условиях

на животных, у потомков людей, переживших разрыв ядерной бомбы в

Хиросиме и Нагасаки, ничего подобного не наблюдалось.

Американские исследования не зафиксировали какой-либо генетической

мутации у людей, живущих рядом с атомными электростанциями. Тем не

менее, необходимо отметить, что исследований о более высокой

предрасположенности к развитию рака у жителей этих регионов пока еще не

проводилось.

По материалам staynatural.ru