Продукты и препараты

Что такое гетерозиготный организм в биологии. Гетерозиготные и гомозиготные организмы

Одним из уровней организации живой материи является ген - фрагмент молекулы нуклеиновой кислоты, в котором определенной последовательностью нуклеотидов заложены качественные и количественные характеристики одного признака. Элементарным явлением, обеспечивающим вклад гена в сохранение нормального уровня жизнедеятельности организма, является самовоспроизведение ДНК и перенос заключенной в ней информации в строго определенную последовательность нуклеотидов транспортной РНК.

Аллельные гены - гены, определяющие альтернативное развитие одного и того же признака и расположенные в идентичных участках гомологичных хромосом. Итак, гетерозиготные особи имеют в каждой клетке два гена - А и а, отвечающих за развитие одного и того же признака. Такие парные гены называют аллельными генами или аллелями. Любой диплоидный организм, будь то растение, животное или человек, содержит в каждой клетке два аллеля любого гена. Исключение составляют половые клетки - гаметы. В результате мейоза в каждой гамете остается один комплект гомологичных хромосом, поэтому любая гамета имеет лишь по одному аллельному гену. Аллели одного гена располагаются в одном и том же месте гомологичных хромосом. Схематически гетерозиготная особь обозначается так: А/а. Гомозиготные особи при подобном обозначении выглядят так: А/А или а/а, но их можно записать и как АА и аа.

Гомозигота - диплоидный организм или клетка, несущий идентичные аллели в гомологичных хромосомах.

Грегором Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных.

Гетерозиготными называют диплоидные или полиплоидные ядра, клетки или многоклеточные организмы, копии генов которых в гомологичных хромосомах представлены разными аллелями. Когда говорят, что данный организм гетерозиготен (или гетерозиготен по гену X), это означает, что копии генов (или данного гена) в каждой из гомологичных хромосом несколько отличаются друг от друга.

20. Понятие о гене. Свойства гена. Функции гена. Виды генов

Ген - структурная и функциональная единица наследственности, контролирующая развитие определённого признака или свойства. Совокупность генов родители передают потомкам во время размножения.

Свойства гена

    Аллельное существование – гены могут существовать как минимум в двух разных формах; соответственно парные гены называются аллельными.

Аллельные гены занимают одинаковые места в гомологичных хромосомах. Место гена в хромосоме называют локусом. Аллельные гены обозначают одинаковой буквой латинского алфавита.

    Специфичность действия – определенный ген обеспечивает развитие не любого признака, а строго определенного.

    Дозированность действия – ген обеспечивает развитие признака не до бесконечности, а в определенных пределах.

    Дискретность – поскольку гены в хромосоме не перекрываются, то в принципе ген развивает признак независимо от других генов.

    Стабильность – гены могут передаваться без каких-либо изменений в ряду поколений, т.е. ген не меняет свою структуру при передаче последующим поколениям.

    Мобильность – при мутациях ген может менять свою структуру.

Функция гена , его проявление, заключается в образовании специфического признака организма. Удаление гена или его качественное изменение приводят соответственно к потере или изменению признака, контролируемого этим геном. В то же время любой признак организма является результатом взаимодействия гена с окружающей и внутренней, генотипической, средой. Один и тот же ген может принимать участие в формировании нескольких признаков организма (явление так наз. плейотропии). Основная масса признаков формируется как результат взаимодействия многих генов (явление полигении). В то же время даже в пределах родственной группы особей, находящихся в сходных условиях существования, проявление одного и того же гена может варьировать по степени выраженности (экспрессивности, или экспрессии). Это указывает на то, что при формировании признаков гены выступают как целостная система, строго функционирующая в определенной генотипической и окружающей среде.

Виды генов.

    Структурные гены – несут информацию о 1-ой структуре белка

    Регуляторные гены – не несут информацию о 1-ой структуре белка, но регулируют процесс биосинтеза белка

    Модификаторы – способны изменить направление синтеза белка

Гомозиготность (от греч. "гомо" равный, "зигота" оплодотворенная яйцеклетка) диплоидный организм (или клетка), несущий идентичные аллели в гомологичных хромосомах.

Грегором Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных. Особи, в потомстве у которых обнаруживается расщепление признаков, назвали гетерозиготными.

Гомозиготность- это состояние наследственного аппарата организма, при котором гомологичные хромосомы имеют одну и ту же форму данного гена. Переход гена в гомозиготное состояние приводит к проявлению в структуре и функции организма (фенотипе) рецессивных аллелей, эффект которых при гетерозиготности подавляется доминантными аллелями. Тестом на гомозиготность служит отсутствие расщепления при определённых видах скрещивания. Гомозиготный организм образует по данному гену только один вид гамет.

Гетерозиготность - это присущее всякому гибридному организму состояние, при котором его гомологичные хромосомы несут разные формы (аллели) того или иного гена или различаются по взаиморасположению генов. Термин "Гетерозиготность" впервые введён английским генетиком У. Бэтсоном в 1902. Гетерозиготность возникает при слиянии разнокачественных по генному или структурному составу гамет в гетерозиготу. Структурная гетерозиготность возникает при хромосомной перестройке одной из гомологичных хромосом, её можно обнаружить в мейозе или митозе. Выявляется гетерозиготность при помощи анализирующего скрещивания. Гетерозиготность, как правило, - следствие полового процесса, но может возникнуть в результате мутации. При гетерозиготности эффект вредных и летальных рецессивных аллелей подавляется присутствием соответствующего доминантного аллеля и проявляется только при переходе этого гена в гомозиготное состояние. Поэтому гетерозиготность широко распространена в природных популяциях и является, по-видимому, одной из причин гетерозиса. Маскирующее действие доминантных аллелей при гетерозиготности - причина сохранения и распространения в популяции вредных рецессивных аллелей (т. н. гетерозиготное носительство). Их выявление (например, путём испытания производителей по потомству) осуществляется при любой племенной и селекционной работе, а также при составлении медико-генетических прогнозов.
Своими словами, можно сказать так, что в разведенческой практике гомозиготное состояние генов называется "правильным". Если обе аллели, контролирующие какую-либо характеристику одинаковы, то животное называется гомозиготным, и в разведении по наследству будет передавать именно эту характеристику. Если одна аллель доминантная, а другая рецессивная, то животное называется гетерозиготным, и внешне будет демонстрировать доминантную характеристику, а по наследству передавать либо доминантную характеристику, либо рецессивную.

Любой живой организм, имеет участок молекул ДНК (дезоксирибонуклеиновой кислоты), называемых хромосомы. При размножении половые клетки осуществляют копирование наследственной информации их носителями (генами), составляющими участок хромосом, которые имеют форму спирали и расположены внутри клеток. Гены, расположенные в одних и тех же локусах (строго определённых положениях в хромосоме) гомологичных хромосом и определяющих развитие какого-либо признака, называются аллельными. В диплоидном (двойном, соматическом) наборе две гомологические (одинаковые) хромосомы и соответственно, два гена как раз и несут развитие этих различных признаков. При преобладании одного признака над другим называется доминированием, а гены доминантные. Признак, проявление которого подавляется, называется рецессивным. Гомозиготностью аллели называется присутствие в ней двух одинаковых генов (носителей наследственной информации): или двух доминантных или двух рецессивных. Гетерозиготностью аллели называется присутствие в ней двух разных генов, Т.е. один из них доминантный, а другой рецессивный. Аллели, которые в гетерозиготе дают то же проявление какого - либо наследственного признака, что и в гомозиготе, называются доминантными. Аллели, которые проявляют свое действие только в гомозиготе, а в гетерозиготе незаметны, либо подавляются действием другого доминантного аллеля, называются рецессивными.

Принципы гомозиготности, гетерозиготности и других основ генетики впервые сформулировал основоположник генетики аббат Грегор Мендель в виде трёх своих законах наследования.

Первый закон Менделя: "Потомство от скрещивания особей, гомозиготных по разным аллеям одного и того же гена, единообразно по фенотипу и гетерозиготно по генотипу".

Второй закон Менделя: "При скрещивании гетерозиготных форм в потомстве наблюдается закономерное расщеплении в соотношении 3:1 по фенотипу и 1:2:1 по генотипу".

Третий закон Менделя: "Аллели каждого гена наследуются независимо от комплекции животного.
С точки зрения современной генетики его гипотезы выглядят так:

1. Каждый признак данного организма контролируется парой аллелей. Особь, получившая от обоих родителей одинаковые аллели, называется гомозиготной и обозначается двумя одинаковыми буквами (например, АА или аа), а если получает разные - то гетерозиготной (Аа).

2. Если организм содержит два различных аллеля данного признака, то один из них (доминантный) может проявляться, полностью подавляя проявление другого (рецессивного). (Принцип доминирования или единообразия потомков первого поколения). В виде примера возьмем моногибридное (только по признаку окраса) скрещивание у кокеров. Предположим, что оба родителя гомозиготны по окрасу, таким образом, черная собака будет иметь генотип, который мы для примера обозначим АА, а палевая аа. Обе особи будут продуцировать только один тип гамет: черная только А, а палевая только а. Независимо от того, сколько щенков родится в таком помете, все они будут черными, поскольку черный окрас доминирует. С другой стороны, все они будут носителями палевого гена, поскольку их генотип Аа. Для тех, кто не слишком разобрался, заметим, что рецессивный признак (в данном случае палевый окрас) проявляется только в гомозиготном состоянии!

3. Каждая половая клетка (гамета) получает по одному из каждой пары аллелей. (Принцип расщепления). Если мы скрестим потомков первого поколения или двух любых кокеров с генотипом Аа, в потомстве второго поколения будет наблюдаться расщепление: Аа + аа = АА, 2Аа, аа. Таким образом, расщепление по фенотипу будет выглядеть как 3:1, а по генотипу как 1:2:1. То есть при вязке двух черных гетерозиготных кокеров у нас может быть 1/4 вероятности рождения черных гомозиготных собак (АА), 2/4 вероятности рождения черных гетерозигот (Аа) и 1/4 вероятности рождения палевых (аа). В жизни все не так просто. Иногда от двух черных гетерозиготных кокеров может получиться б палевых щенков, а могут быть все черные. Мы просто просчитываем вероятность появления данного признака у щенков, а уж проявится ли он, зависит от того, какие аллели попали в оплодотворенные яйцеклетки.

4. При образовании гамет в каждую из них может попасть любой аллель из одной пары вместе с любым другим из другой пары. (Принцип независимого распределения). Очень многие признаки наследуются независимо, например, если цвет глаз может зависеть от общего окраса собаки, то практически никак не связан с длиной ушей. Если взять дигибридное скрещивание (по двум разным признакам), то мы можем увидеть следующее соотношение: 9: 3: 3: 1

5. Каждый аллель передается из поколения в поколение как дискретная неизменяющаяся единица.

б. Каждый организм наследует по одному аллелю (для каждого признака) от каждой из родительских особей.

Доминантность
Если для специфического гена две аллели, которые несет особь, будут одинаковы, то какая из них будет преобладать? Поскольку мутация аллелей часто приводит к потере функций (пустые аллели), особь, несущая только одну такую аллель, будет также иметь "нормальную" (дикий тип) аллель для того же самого гена; единственной нормальной копии часто будет достаточно, чтобы поддерживать нормальную функцию. Для аналогии, позвольте нам вообразить, что мы строим кирпичную стену, но один из наших двух обычных подрядчиков бастует. Пока оставшийся поставщик может снабжать нас достаточным количеством кирпичей, мы можем продолжать строить нашу стену. Генетики называют это явление, когда один из двух генов все еще может обеспечивать нормальную функцию, доминантностью. Нормальная аллель, как определяют, является доминантной по отношению к неправильной аллели. (Иначе можно сказать, что неправильная аллель является рецессивной по отношению к нормальной.)

Когда кто-то говорит о генетической ненормальности, "несомой" особью или линией, подразумевается, что имеется мутированный ген, который является рецессивным. Если мы не имеем сложного тестирования на непосредственное обнаружение этого гена, то мы не сможем визуально определить курьера (носителя) от особи с двумя нормальными копиями (аллелями) гена. К сожалению, испытывая недостаток в подобных тестированиях, курьер не будет своевременно обнаружен и неизбежно передаст аллель мутации части своего потомства. Каждая особь может быть подобно "укомплектована" и нести несколько таких темных тайн в своем генетическом багаже (генотип). Однако, все мы имеем тысячи различных генов для множества различных функций, и пока эти отклонения редки, вероятность того, что две неродственные особи, несущие одинаковую "ненормальность", встретятся для воспроизводства, очень низка.

Иногда особи с единственной нормальной аллелью могут иметь "промежуточный" фенотип. Например, у Бассенджи, несущей одну аллель для дефицита пируваткиназы (недостаток фермента, ведущий к слабо выраженной анемии), средняя продолжительность жизни красной кровяной клетки - 12 дней. Это промежуточный тип между нормальным циклом в 16 дней и циклом в 6,5 дней у собаки с двумя неправильными аллелями. Хотя это часто называют неполной доминантностью, в этом случае предпочтительнее было бы сказать, что нет вообще никакой доминантности.

Пронесем нашу аналогию с кирпичной стеной немного дальше. Что, если единственной поставки кирпичей будет недостаточно? Мы останемся со стеной, которая будет ниже (или короче) предполагаемой. Будет ли это иметь значение? Это зависит от того, что мы хотим сделать со "стеной" и, возможно, от генетических факторов. Результат, возможно, будет не одинаков для двух людей, которые строили эту стену. (Низкая стена может не пропустить паводок, но не наводнение!) Если есть возможность, что особь, несущая только одну копию неправильной аллели, проявит её неправильным фенотипом, то эта аллель должна быть расценена как доминантная. Её отказ всегда делать так определяется термином пенетрантность.

Третья возможность состоит в том, что один из подрядчиков поставляет нам нестандартные кирпичи. Не понимая этого, мы продолжаем работу - в итоге стена падает. Мы могли бы сказать, что дефектные кирпичи являются преобладающим (доминантным) фактором. Успех в понимании нескольких доминантных генетических заболеваний у человека предполагает, что это - разумная аналогия. Большинство доминирующих мутаций затрагивают белки, которые являются компонентами больших макромолекулярных комплексов. Эти мутации приводят к изменению белков, которые не могут должным образом взаимодействовать с другими компонентами, ведя к сбою всего комплекса (дефектные кирпичи - упавшая стена). Другие находятся в регулирующих последовательностях, смежных с генами, и заставляют ген быть расшифрованным в несоответствующем времени и месте.

Доминантные мутации могут сохраняться в популяциях, если проблемы, которые они вызывают, являются тонкими и не всегда выраженными, или проявляются на зрелой стадии жизни, после того как затронутая особь участвовала в воспроизводстве.

Рецессивный ген (т.е. признак, им определяемый) может не проявляться у одного или многих поколений пока не встретятся два идентичных рецессивных гена от каждого из родителей (внезапное проявление такого признака у потомков не следует путать с мутацией).
Собаки, имеющие лишь один рецессивный ген - определитель какого-либо признака, не проявят это признак, так как действие рецессивного гена будет замаскировано проявлением влияния парного ему доминантного гена. Такие собаки (носители рецессивного гена) могут быть опасны для породы, если этот ген определяет появление нежелательного признака, потому что будет передавать его своим потомкам, а те далее и он таким образом сохранится в породе. Если случайно или необдуманно свести в пару двух носителей такого гена они дадут часть потомства с нежелательными признаками.

Присутствие доминантного гена всегда явно и внешне проявляется соответствующим признаком. Поэтому доминантные гены, несущие нежелательный признак, представляют для селекционера значительно меньшую опасность, чем рецессивные, так как их присутствие всегда проявляется, даже если доминантный ген «работает» без партнера (Аа).
Но, видимо, для того, чтобы усложнить дело, не все гены являются абсолютно доминантными или рецессивными. Другими словами, некоторые более доминантны, чем другие и наоборот. Например, некоторые факторы, определяющие окрас шерсти могут быть доминантными, но все же внешне не проявляться, если их не поддержат другие гены, иногда даже рецессивные.
Спаривания не всегда дают соотношения в точном соответствии с ожидаемыми средними результатами и для получения достоверного результата от данного спаривания нужно произвести большой помет или большое число потомков в нескольких пометах.
Некоторые внешние признаки могут быть «доминантными» в одних породах и «рецессивными» в других. Другие признаки могут быть обусловлены множественными генами или полугенами, не являющимися простыми доминантами или рецессивами по Менделю.

Диагностика генетических нарушений
Диагностика генетических нарушений как учение о распознавании и обозначении генетических болезней складывается в основном из двух частей
выявление патологических признаков, то есть фенотипических отклонений у отдельных особей; доказательство наследуемости обнаруженных отклонений. Под понятием "оценка генетического здоровья" подразумевают проверку фенотипически нормальной особи на предмет выявления неблагоприятных рецессивных аллелей (тест на гетерозиготность). Наряду с генетическими методами применяют и методы, исключающие влияние среды. Рутинные методы исследования: бонитировка, лабораторная диагностика, методы патологической анатомии, гистологии и патофизиологии. Специальные методы, имеющие большое значение - цитогенетические и иммуногенетические методы. Метод культуры клеток способствовал серьезным успехам в диагностике и генетическом анализе наследственных заболеваний. За короткий срок этот метод позволил изучить около 20 генетических дефектов, встречающихся у человека (Рерабек и Рерабек, 1960; Нью,1956; Рапопорт,1969) с его помощью можно во многих случаях отдеференцировать гомозигот от гетерозигот при рецессивном типе наследования
Иммуногенетические методы применяются для изучения групп крови, белков сыворотки крови и молока, белков семенной жидкости, типов гемоглобина и др. Открытие большого числа белковых локусов с множественными аллелями привело к "эпохе ренессанса" в менделевской генетике. Белковые локусы используются:
для установления генотипа отдельных животных
при исследовании некоторых специфических дефектов (иммунопарез)
для изучения сцепления (гены маркеры)
для анализа генной несовместимости
для выявления мозаицизма и химеризма
Наличие дефекта с момента рождения, пороки, всплывающие в определенных линиях и питомниках, присутствие в каждом аномальном случае общего предка - не означает наследственности данного состояния и генетической природы. При выявлении патологии необходимо получить доказательство ее генетичекой обусловленности и определить тип наследования. Необходима также статистическая обработка материала. Генетико-статистическому анализу подвергают две группы данных:
Популяционные данные - частота врожденных аномалий в совокупной популяции, частота врожденных аномалий в субпопуляции
Семейные данные - доказательство генетической обусловленности и определение типа наследования, коэффициенты инбридинга и степень концентрации предков.
При изучении генетической обусловленности и типа наследования сравнивают наблюдаемые численные соотношения нормального и дефектного фенотипов в потомстве группы родителей одинакового (теоретически) генотипа с вычисленными на основании биноминальных вероятностей соотношениями расщепления согласно законам Менделя. Для получения статистического материала необходимо вычислить частоту пораженных и здоровых особей среди кровных родственников пробанда на протяжении нескольких поколений, определить численное соотношение путем комбинации отдельных данных, объединить данные о небольших семьях с соответственно одинаковыми родительскими генотипами. Так же важны сведения о размере помета и пола щенков (для оценки возможности сцепленной или ограниченной полом наследственности).
При этом необходимо провести сбор данных по отбору:
Комплексный отбор - случайная выборка родителей (применяется при проверке доминантного признака)
Целенаправленный отбор - все собаки с "плохим" признаком в популяции после тщательного ее обследования
Индивидуальный отбор - вероятность проявления аномалии настолько низка, что он встречается у одного щенка из помета
Множественный отбор - промежуточный между целенаправленным и индивидуальным, когда в помете имеется больше одного пораженного щенка, но не все они являются пробандами.
Все способы, кроме первого исключают вязки собак с генотипом Nn, не дающих в пометах аномалии. Существуют различные способы коррекции данных: Н.Т.Дж. Бейли(79), Л.Л.Кавайи-Сфорца и В.Ф.Бодме и К.Стер.
Генетическая характеристика популяции начинается с оценки распространенности изучаемого заболевания или признака. По этим данным определяются частоты генов и соответствующих генотипов в популяции. Популяционный метод позволяет изучать распространение отдельных генов или хромосомных аномалий в популяциях. Для анализа генетической структуры популяции необходимо обследовать большую группу особей, которая должна быть представительной, позволяющей судить о популяции в целом. Этот метод информативен при изучении различных форм наследственной патологии. Основным методом при определении типа наследственных аномалий является анализ родословных в пределах родственных групп особей, в которых фиксировались случаи изучаемого заболевания по следующему алгоритму:
Определение происхождения аномальных животных по племенным карточкам;
Составление родословных на аномальных особей с целью поиска общих предков;
Анализ типа наследования аномалии;
Проведение генетико-статистических расчётов на степень случайности появления аномалии и частоты встречаемости в популяции.
Генеалогический метод анализа родословных занимает ведущее место в генетических исследованиях медленно размножающихся животных и человека. По исследованию фенотипов нескольких поколений родственников можно установить характер наследования признака и генотипы отдельных членов семей, определить вероятность проявления и степень риска для потомства по тому или иному заболеванию.
При определении наследственного заболевания обращают внимание на типичные признаки генетической предрасположенности. Патология возникает чаще всего в группе родственных животных, чем в целой популяции. Это помогает отличить врожденное заболевание от породной предрасположенности. Однако анализ родословной показывает, что есть семейные случаи заболевания, что, предполагает наличие определенного гена или группы генов, ответственных за это. Во-вторых, наследственный дефект часто затрагивает одну и туже анатомическую область в группе родственных животных. В-третьих, при инбридинге случаев заболевания становится больше. В-четвертых, наследственные заболевания часто проявляются рано, и нередко имеют постоянный возраст начала заболевания.
Генетические заболевания обычно поражают несколько животных в помете, в отличие от интоксикации и инфекционных заболеваний, которые поражают весь помет. Врожденные заболевания очень разнообразны, от относительно благоприятных до неизменно летальных. Диагностика их обычно базируется на сборе анамнеза, клинических признаках, анамнезе заболевания у родственных животных, результатах анализирующего скрещивания и определенных диагностических исследованиях.
Значительное число моногенных заболеваний наследуется по рецессивному типу. Это значит, что при аутосомной локализации соответствующего гена болеют только гомозиготные носители мутаций. Мутации чаще всего рецессивные и проявляются только в гомозиготном состоянии. Гетерозиготы клинически здоровы, но с равной вероятностью передают своим детям мутантный или нормальный вариант гена. Таким образом, на протяжении длительного времени мутация в скрытом виде может передаваться из поколения в поколение. При аутосомно-рецессивном типе наследования в родословных тяжелобольных, которые либо не доживают до репродуктивного возраста, либо имею резко сниженные потенции к размножению, редко удается выявить больных родственников, особенно по восходящей линии. Исключение составляют семьи с повышенным уровнем инбридинга.
Собаки, имеющие лишь один рецессивный ген - определитель какого-либо признака, не проявят это признак, так как действие рецессивного гена будет замаскировано проявлением влияния парного ему доминантного гена. Такие собаки (носители рецессивного гена) могут быть опасны для породы, если этот ген определяет появление нежелательного признака, потому что будет передавать его своим потомкам. Если случайно или обдуманно свести в пару двух носителей такого гена они дадут часть потомства с нежелательными признаками.
Ожидаемое соотношение расщепления потомков по тому или иному признаку приблизительно оправдывается при помете не менее 16 щенков. Для помета обычного размера - 6-8 щенков - можно говорить лишь о большей или меньшей вероятности проявления признака, определяемого рецессивным геном, для потомков определенной пары производителей с известным генотипом.
Отбор рецессивных аномалий может осуществляться двумя способами. Первый из них - исключать из разведения собак с проявлениями аномалий, т. е. гомозигот. Встречаемость аномалии при таком отборе в первых поколениях снижается резко, а затем более медленно, сохраняясь на относительно низком уровне. Причина неполного устранения некоторых аномалий даже в течение длительного и упорного отбора состоит, во-первых, в гораздо более медленном сокращении носителей рецессивных генов, чем гомозигот. Во-вторых, в том, что при мутациях, незначительно отклоняющихся от нормы, заводчики не всегда выбраковывают аномальных собак и носителей.
При аутосомно-рецессивном типе наследования:
Признак может передаваться через поколение даже при достаточном числе потомков
Признак может проявиться у детей в (видимом) отсутствие его у родителей. Обнаруживается тогда в 25% случаев у детей
Признак наследуется всеми детьми, если оба родителя больны
Признак в 50% развивается у детей, если один из родителей болен
Потомки мужского и женского пола наследуют этот признак одинаково
Таким образом, абсолютно полное устранение аномалии принципиально возможно при условии выявления всех носителей. Схема такого выявления: гетерозигот по рецессивным мутациям можно в некоторых случаях обнаружить лабораторными методами исследований. Однако, для генетического выявления гетерозигот-носителей, необходимо проведение анализирующих скрещиваний - вязок подозреваемой, как собака-носитель с гомозиготной аномальной (если аномалия незначительно затрагивает организм) или с уже установленным ранее носителем. Если в результате таких скрещиваний рождаются среди прочих и аномальные щенки, испытываемый производитель однозначно определяется как носитель. Однако если таких щенков не выявлено, то однозначного вывода сделать на ограниченной выборке полученных щенков нельзя. Вероятность того, что такой производитель является носителем, уменьшается с расширением выборки - увеличением числа рожденных от вязок с ним нормальных щенков.
На кафедре ветеринарной академии Санкт-Петербурга проведен анализ структуры генетического груза у собак и установлено, что наибольший удельный вес - 46,7% составляют аномалии, наследуемые по моногенному аутосомно-рецессивному типу; аномалии с полным доминированием составили 14,5%; как неполнодоминантные признаки проявились 2,7% аномалий; 6,5% аномалий наследуются как сцепленный с полом, 11,3% наследственных признаков с полигенным типом наследования и 18%3% всего спектра наследственных аномалий тип наследования не установлен. Общее число аномалий и болезней, имеющих наследственную основу, у собак составило 186 наименований.
Наряду с традиционными методами селекционно-генетической профилактики актуальным является использование фенотипических маркеров мутаций.
Генетический мониторинг болезней является прямым методом оценки наследственных болезней у потомков непораженных родителей. "Сторожевыми" фенотипами могут быть: волчья пасть, заячья губа, паховые и пупочные грыжи, водянка новорожденных, судороги у новорожденных щенков. В моногенных зафиксированных болезнях существует возможность опознавать действительного носителя через связанного с ним гена-маркера.
Существующее породное разнообразие собак представляет уникальную возможность изучения генетического контроля многочисленных морфологических признаков, различное сочетание которых определяет породные стандарты. Иллюстрацией данного положения могут служить две из ныне существующих пород домашней собаки, контрастно различающиеся между собой хотя бы по таким морфологическим признакам, как рост и вес. Это порода английский мастиф, с одной стороны, у представителей которой высота в холке достигает 80 см а вес тела превышает 100 кг, и порода чи хуа хуа, 30 см и 2,5 кг.
Процесс доместикации включает отбор животных по их наиболее выдающимся признакам, с точки зрения человека. Со временем, когда собаку стали содержать, как компаньона и за ее эстетический вид, направление селекции изменилось на получение пород, плохо приспособленных к выживанию в природе, но хорошо приспособленных к человеческому окружению. Существует мнение, что "дворняжки" более здоровые, чем чистопородные собаки. Действительно, наследственные заболевания возможно чаще встречаются у домашних животных, чем у диких..
"Одна из важнейших целей - разработка методов объединения задач совершенствования животных по селекционируемым признакам и сохранения на необходимом уровне их фитнесса - в противоположность опасному для биологического благополучия доместицированных организмов одностороннему отбору на максимальное (подчас утрированное, чрезмерное) развитие специфических породных черт"- (Lerner, 1958).
Эффективность селекции, на наш взгляд, должна заключаться в диагностике аномалии у пораженных животных и выявлении носителей, имеющих дефектную наследственность, но с нормальным фенотипом. Лечение пораженных животных с целью коррекции их фенотипов может рассматриваться не только как мероприятие для улучшения эстетического вида животных (олигодонтия), но и предупреждение раковых заболеваний (крипторхизм), сохранение биологической, полноценной активности (дисплазия тазобедренных суставов) и стабилизация здоровья вообще. В связи с этим необходима селекция против аномалий при совместной деятельности кинологии и ветеринарии.
Возможность тестирования ДНК на различные болезни собак очень новая вещь в кинологии, знание этого может предупредить заводчиков, на какие генетические заболевания следует обратить особое внимание при подборе пар производителей. Хорошее генетическое здоровье очень важно, потому что это определяет биологически полноценную жизнь собаки. В книге доктора Паджетта "Контроль наследственных болезней у собак" показано, как читать генетическую родословную на предмет какой-либо аномалии. Генетические родословные покажут, является ли эта болезнь связанной с полом, либо наследование идёт через простой доминантный ген, либо через рецессивный, либо болезнь полигенная по происхождению. Непреднамеренные генетические ошибки, будут время от времени происходить вне зависимости от тщательности работы заводчика. Используя генетические родословные как средство в обмене знаниями, можно разбавить "вредные" гены до такой степени, чтобы остановить их от проявления до того времени, когда будет найден маркер ДНК для тестирования их передачи. Поскольку селекционный процесс предполагает улучшение популяции в следующем поколении, то учитываются не фенотипические характеристики непосредственных элементов селекционной стратегии (особей или пар скрещиваемых особей), а фенотипические характеристики их потомков. Именно в связи с этим обстоятельством и возникает необходимость описания наследования признака для селекционных задач. Пара скрещивающихся особей отличаются от остальных таких же особей своим происхождением и фенотипическими характеристиками признака, как их самих, так и их родственников. На основе этих данных, если есть готовое описание наследования, можно получить ожидаемые характеристики потомства и, следовательно, оценки селекционных ценностей каждого из элементов селекционной стратегии. При любых мерах, направленных против какой-либо генетической аномалии, первым делом нужно определить относительную важность "плохого" признака по сравнению с другими признаками. Если нежелательный признак имеет высокую частоту наследуемости и наносит собаке серьёзный ущерб, следует действовать иначе, чем в случае редкого проявления признака или его второстепенного значения. Великолепная по породному типу собака, передающая порочный окрас, остаётся гораздо более ценным производителем, чем посредственная, но с правильным окрасом.

Грегором Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам . Особи, не дающие расщепления в следующем поколении, получили название гомозиготных . Особи, в потомстве у которых обнаруживается расщепление признаков, назвали гетерозиготными .

Гомозиготность - это состояние наследственного аппарата организма, при котором гомологичные хромосомы имеют одну и ту же форму данного гена. Переход гена в гомозиготное состояние приводит к проявлению в структуре и функции организма (фенотипе) рецессивных аллелей, эффект которых при гетерозиготности подавляется доминантными аллелями. Тестом на гомозиготность служит отсутствие расщепления при определённых видах скрещивания. Гомозиготный организм образует по данному гену только один вид гамет.

Гетерозиготность - это присущее всякому гибридному организму состояние, при котором его гомологичные хромосомы несут разные формы (аллели) того или иного гена или различаются по взаиморасположению генов. Термин "Гетерозиготность" впервые введён английским генетиком У. Бэтсоном в 1902. Гетерозиготность возникает при слиянии разнокачественных по генному или структурному составу гамет в гетерозиготу . Структурная гетерозиготность возникает при хромосомной перестройке одной из гомологичных хромосом, её можно обнаружить в мейозе или митозе . Выявляется гетерозиготность при помощи анализирующего скрещивания. Гетерозиготность, как правило, - следствие полового процесса , но может возникнуть в результате мутации. При гетерозиготности эффект вредных и летальных рецессивных аллелей подавляется присутствием соответствующего доминантного аллеля и проявляется только при переходе этого гена в гомозиготное состояние. Поэтому гетерозиготность широко распространена в природных популяциях и является, по-видимому, одной из причин гетерозиса. Маскирующее действие доминантных аллелей при гетерозиготности - причина сохранения и распространения в популяции вредных рецессивных аллелей (т. н. гетерозиготное носительство). Их выявление (например, путём испытания производителей по потомству) осуществляется при любой племенной и селекционной работе, а также при составлении медико-генетических прогнозов.

В разведенческой практике гомозиготное состояние генов называется "правильным" . Если обе аллели, контролирующие какую-либо характеристику одинаковы, то животное называется гомозиготным , и в разведении по наследству будет передавать именно эту характеристику. Если одна аллель доминантная, а другая рецессивная, то животное называется гетерозиготным, и внешне будет демонстрировать доминантную характеристику, а по наследству передавать либо доминантную характеристику, либо рецессивную.

Любой живой организм, имеет участок молекул ДНК (дезоксирибонуклеиновой кислоты), называемых хромосомы. При размножении половые клетки осуществляют копирование наследственной информации их носителями (генами), составляющими участок хромосом, которые имеют форму спирали и расположены внутри клеток. Гены, расположенные в одних и тех же локусах (строго определённых положениях в хромосоме) гомологичных хромосом и определяющих развитие какого-либо признака, называются аллельными . В диплоидном (двойном, соматическом) наборе две гомологические (одинаковые) хромосомы и соответственно, два гена как раз и несут развитие этих различных признаков. При преобладании одного признака над другим называется доминированием , а гены доминантные . Признак, проявление которого подавляется, называется рецессивным. Гомозиготностью аллели называется присутствие в ней двух одинаковых генов (носителей наследственной информации): или двух доминантных или двух рецессивных. Гетерозиготностью аллели называется присутствие в ней двух разных генов, Т.е. один из них доминантный, а другой рецессивный. Аллели, которые в гетерозиготе дают то же проявление какого - либо наследственного признака, что и в гомозиготе, называются доминантными . Аллели, которые проявляют свое действие только в гомозиготе, а в гетерозиготе незаметны, либо подавляются действием другого доминантного аллеля, называются рецессивными.

Генотип - совокупность всех генов организма. Генотип представляет собой взаимодействующие друг с другом и влияющие друг на друга совокупности генов. Каждый ген испытывает на себе воздействие других генов генотипа и сам оказывает на них влияние, поэтому один и тот же ген в разных генотипах может проявляться по-разному.

Фенотип – совокупность всех свойств и признаков организма. Фенотип развивается на базе определенного генотипа в результате взаимодействия организма с условиями окружающей среды. Организмы, имеющие одинаковый генотип, могут отличаться друг от друга в зависимости от условий развития и существования.

    Гомо с латинского переводится как одинаковый, гомозиготный признак это признак, который в организме наследуется одинаковым генном, который находится в спаренном состоянии (АА). Следовательно гомозиготный организм это организм, в котором признак наследуется одинаковым генном.

    Доминантный признак обозначается буквой А, рецессивный признак обозначается буквой а.

    Гетеро с латинского переводится как разный, это когда в организме признак может быть унаследован как по доминанту, так и по рецессиву, т.е. может быть наследование признака как АА, Аа и аа. В первых двух случаях признак наследуется по доминанту, а во втором случае по рецессиву. Следовательно гетерозиготный организм это организм, в котором признак наследуется разными геннами.

    • Гомозиготный организм - это организм (животное или растение), который имеет два абсолютно одинаковых гена, например, два доминантных гена черной окраски (BB) или два рецессивных гена коричневой окраски (bb). Этот организм по данному признаку называют чистым.
    • Гетерозиготный организм - это организм, содержащий один доминантный и один рецессивный ген (например, Bb). Такой организм называют гибридным.
  • Для того, чтобы понять о чм вообще речь идт необходимо разбираться в генах, а вернее в их делении на доминантные и рецессивные...

    Доминантные гены - это те гены, которые доминируют над другими, сражаются за свою победу...

    Рецессивные гены - это те гены, которые подавлены и не могут сражаться с доминантными...

    Итак гомозиготные организмы содержат два доминантных гена (от слово гомо - одинаковые)...

    Гетерозиготные организмы содержат разные гены, один доминантный, другой рецессивный (от слова гетеро - разные)...

    Итак принципиальная разница в том, что гены могут быть как одинаковые по влвсти, так и разные...

    В медицинской энциклопедии есть определение

    Гомозиготным полом называется пол, который имеет 2 одинаковые половые хромосомы. В гомозиготном (от греческого гомос означает одинаковый, а зиготе означает спаренная) организме имеется 2 одинаковые копии определенного гена в гомологичных хромосомах.

    Гетерозиготным полом называется пол, который имеет разные половые хромосомы или всего одну хромосому. В гетерозиготном организме, еще называют гибридный организм, по определению имеется две разные формы определенного гена (разные формы гена) в гомологичных хромосомах.

    Это очень сложные определения для тех, кто не сталкивался с такими понятиями, но очень понятное объяснение дает биологическая энциклопедия, смотрите по ссылке здесь.

    гомо - однородный.

    гетеро - неоднородный.

    Для организмов это значит, что если аллельные гены одинаковые, то организм гомозиготный, а если разные то гетерозиготный, что можно использовать при скрещивании двух организмов.

    Гомозиготные и гетерозиготные организмы различаются между собой наличием или отсутствием двух одинаковых генов. У гомозиготных организмов или оба признака доминантные или рецессивные (например, темные волосы и карие глаза). У гетерозиготных один из признаков доминантный, а другой рецессивный (например, светлые волосы и карие глаза).

    Гомозиготные (гомо - одинаковые) - те организмы, у которых два гена одинаково доминируют во всм организме.

    Герерозиготные (гетеро - разные) - те организмы, у которых два гена разные, т.е. один доминирует, а другой подавлен.

    Гомозиготный (гомос - одинаковый, зиготе - спаренный) организм с одинаковыми структурами данного типа. Оба доминантных или оба рецессивных. А в гетерозиготных организмах присутствуют оба признака - и доминантный, и рецессивный.

    Гомозиготные организмы - это такие организмы, которые имеют два идентичные по формам гена (либо оба доминантные, либо оба рецессивные);

    Гетерозиготные организмы - это такие организмы, которые имеют как доминантную, так и рецессивную форму генов.

    У гомозиготных организмов нет расщепления признаков, а у гетерозиготных есть.

    Существуют доминантные гены и рецессивные (слабовато влияющие).

    Доминантные гены обозначают заглавной английской буквой, например A , а рецессивные - строчной a .

    У гетерозиготных организмов обычно один ген доминантный, а второй рецессивный:

    Обозначается это так: Aa .

    При создании данным организмом потомства решающую роль в том, каким будет потомок играет доминантный ген, то есть A .

    Например если рассматривать мышей. Если доминантный ген А - это пушистая шерсть, а рецессивный a - это лысый (бывают лысые альбиносы), то победит доминантный ген А и потомок будет волосатый. Причм это ещ приведт к увеличению рода, так как лысые особи не защищены от холода и скорее всего погибнут, а волосатые смогут дожить до взросления и оставления потомства.

    Гомозиготные организмы - это такие организмы у которых одинаковые гены (аллели). Либо два рецессивных aa , либо два доминантных AA .

Одним из наиболее значимых свойств любого живого организма является наследственность, лежащая в основе эволюционных процессов на планете, а также сохранения видового разнообразия на ней. Наименьшей единицей наследственности выступает ген - структурный элемент отвечающий за передачу наследственной информации, связанной с тем или иным признаком организма. В зависимости от степени проявления выделяются доминантные и Характерной особенностью доминантных единиц является способность «подавлять» рецессивные, оказывая решающее воздействие на организм, не позволяя им проявляться в первом поколении. Однако стоит отметить, что наряду с наблюдается неполное, при котором не способен полностью подавить проявление рецессивное и сверхдоминирование, предусматривающее проявление соответствующих признаков в форме более сильной, чем у гомозиготных организмов. В зависимости от того, какие аллельные (то есть, отвечающие за развитие одного и того же признака) гены он получает от родительских особей, выделяются гетерозиготные и гомозиготные организмы.

Определение гомозиготного организма

Гомозиготные организмы - это объекты живой природы, имеющие два одинаковых (доминантных либо рецессивных) гена по тому или иному признаку. Отличительной чертой последующих поколений гомозиготных особей является отсутствие у них расщепления признаков и их однообразие. Объясняется это, главным образом, тем, что генотип гомозиготного организма содержит всего один тип гамет, обозначаемых в случае, если речь идет о и строчной при упоминании рецессивных. Гетерозиготные организмы отличаются тем, что они содержат разные аллельные гены, и, в соответствии с этим, образуют два разных типа гамет. Гомозиготные организмы, рецессивные по основным аллелям, можно обозначить как aa, bb, aabb и т.д. Соответственно, гомозиготные организмы, доминантные по аллелям, имеют код AA, BB, AABB.

Закономерности наследования

Скрещивание двух гетерозиготных организмов, генотипы которых можно условно обозначить как Аа (где А - доминантный, а - рецессивный ген), предоставляет возможность получения с равной долей вероятности четырех различных комбинаций гамет (варианта генотипа) с расщеплением 3:1 по фенотипу. Под генотипом в данном случае понимается совокупность генов, которые содержит диплоидный набор той или иной клетки; под фенотипом - систему внешних, а также внутренних признаков рассматриваемого организма.

и его особенности

Рассмотрим закономерности, связанные с процессами скрещивания, в которых принимают участие гомозиготные организмы. В том же случае, если имеет место дигибридное или полигибридное скрещивание, вне зависимости от характера наследуемых признаков, расщепление происходит в соотношении 3:1, причем этот закон является справедливым для любого их количества. Скрещивание особей второго поколения в таком случае формирует четыре основных вида фенотипов при соотношении 9:3:3:1. Стоит отметить, что этот закон является справедливым для гомологичных пар хромосом, взаимодействие генов внутри которых не осуществляется.